Mostrando entradas con la etiqueta Hilbert. Mostrar todas las entradas
Mostrando entradas con la etiqueta Hilbert. Mostrar todas las entradas

2009/12/17

El infinito y más allá, los números transfinitos Aleph

A finales del siglo XIX el original matemático Georg Cantor propuso una bella teoría sobre los números finitos o transfinitos, según la cual el número total de fracciones, números enteros y números naturales son el mismo número transfinito al que llamó Aleph sub-cero.

A primera vista no parece algo razonable, pues se podría pensar que el número de enteros es mayor que el número de naturales, ya que todo número natural es un entero mientras que algunos enteros (los negativos) no son números naturales. De forma similar se podría pensar, también, que el número de fracciones es mayor que el de enteros, pero una cosa es lo que parece y otra lo que es.


La clave está en las extrañas propiedades de los números infinitos y las relaciones que se pueden establecer entre ellos. Para objetos finitos de dos conjuntos diferentes si podemos establecer una "correspondencia uno-a-uno", entre ambos, se puede deducir que tienen el mismo número de elementos. Para un número finito de números naturales ocurre lo mismo, pero lo que es evidente para números finitos deja de serlo para infinitos.

Se puede establecer una correspondencia uno-a-uno entre los números naturales y los números enteros de la siguiente forma: 0(entero)--> 0(natural); -1(entero)--> 1(natural); +1 (entero)--> 2 (natural) y así seguimos indefinidamente con la siguiente tabla:



Cada entero y cada número natural aparecen una y sólo una vez en la tabla. Esta correspondencia entre cada par de números entero-natural es lo que establece en la teoría de Cantor que el número de elementos de la columna de enteros es igual al número de elementos en la columna de naturales. Por consiguiente, el número de enteros es el mismo que el de naturales. De forma similar, aunque algo más complicada, se puede probar que el conjunto de fracciones (racionales) tiene el mismo número de elementos que el conjunto de enteros. El número es infinito, pero no importa, es el mismo número.

El gran matemático David Hilbert se inventó la metáfora del Hotel Infinito para explicar de forma intuitiva las paradojas a las que nos enfrenta la existencia de infinidad de infinitos:

"Había un hotel que tenía infinitas habitaciones. Un día llega un nuevo huésped para alojarse allí, pero el conserje le dice que tenía mala suerte, que estaban todas llenas. El huésped, indignado llama al gerente, y le pregunta cómo era posible en un hotel con infinitas habitaciones. El gerente le da la razón, pero dice que no puede hacer nada, entonces el huésped responde rápidamente: ‘ya se lo que se puede hacer; al que esté en la habitación 1 lo manda a la habitación 2, al de la habitación 2 a la 3 y así sucesivamente, entonces la habitación 1 quedará libre para mi. El gerente
encontró maravillosa esta solución y así lo hizo".


"Algunos días después llega otro huésped y pide de alojarse, a lo que le responden que el hotel estaba lleno, pero que no se preocupara, que sabían cómo solucionarlo. Entonces este huésped dice que había un problema, que él no estaba solo, sino con un grupo de amigos… y que era un grupo infinito. El gerente, otra vez consternado no sabía qué hacer, pero el huésped, también muy hábil le dice que no se preocupe, que mande al de la habitación 1 a la 2, al de la 2 a la 4, al de la 3 a la 6 y así sucesivamente. De esa forma todas las habitaciones con números impares quedarían libres para sus infinitos amigos."

Los conjuntos que pueden ser puestos en correspondencia uno-a-uno con los números naturales se llaman numerables, de modo que los conjuntos infinitos numerables tienen aleph sub-cero elementos.

¡Sorprendentemente, aunque se amplíe el sistema desde los números naturales a los enteros y a los racionales, no incrementamos realmente el número de objetos con los que trabajamos!.

Después todo esto podríamos pensar que todos los conjuntos infinitos son numerables, pero no es así, no sólo hay un tipo de infinito, pues la situación es muy diferente al pasar a los números reales. Cantor demostró mediante el argumento del "corte diagonal" que realmente hay más números reales que racionales. El número de reales es el número transfinito C, de continuo, otro nombre que recibe el sistema de los números reales.

Podríamos pensar en darle a ese número el nombre de aleph sub-uno, por ejemplo. Pero ese nombre representa el siguiente número transfinito mayor que aleph sub-cero y el decidir si efectivamente C = Aleph sub-uno constituye un famoso problema no resuelto, la llamada hipótesis del continuo.

Como curiosidad, ya que estamos hablando de infinitos, el término gugol (en inglés googol) es un número enorme 10100 fue acuñado en 1938 por Milton Sirotta, un niño de 9 años, sobrino del matemático estadounidense Edward Kasner. Kasner anunció el concepto en su libro Las matemáticas y la imaginación. Isaac Asimov dijo en una ocasión al respecto: "Tendremos que padecer eternamente un número inventado por un bebé".

El gúgol no es de particular importancia en las matemáticas y tampoco tiene usos prácticos. Kastner lo creó para ilustrar la diferencia entre un número inimaginablemente grande y el infinito, y a veces es usado de esta manera en la enseñanza de las matemáticas. El motor de búsqueda de google fue llamado así debido a este número. Los fundadores originales iban a llamarlo Googol, pero terminaron con Google debido a un error de ortografía de Larry Page, uno de los fundadores de Google.

2007/05/31

El teorema de Gödel, sobre la verdad y la demostrabilidad

El teorema de Gödel es equiparable por su importancia a la teoría de la relatividad de Albert Einstein, y es una de las construcciones fundamentales de las matemáticas de todos los tiempos. Gödel utilizó el rigor de las matemáticas para demostrar, sin lugar a dudas, que las matemáticas mismas son incompletas. En su artículo de 1931, Gödel demuestra que en cualquier sistema lógico basado en axiomas y reglas de inferencia, existen enunciados cuya verdad o falsedad no vamos a poder decidir, basándonos en la propia lógica matemática del sistema. Antes de Gödel esto ni siquiera se consideraba, pues lo interesante de un enunciado era poder demostrar que era verdadero o bien era falso. A partir de Gödel aparece una diferencia muy sutil entre verdad/falsedad y demostrabilidad.

El teorema de Gödel tiene que ver con enunciados que hacen referencia a sí mismos. Sócrates afirmaba, en su famosa frase:" Yo sólo sé que no sé nada". Se contradecía, al afirmar que sólo sabía una cosa y, al mismo tiempo, no sabía nada:hacía referencia a si mismo y ahí es donde residía su contradicción. A principios del siglo XX (1902) el gran matemático y filósofo Bertran Russell, que entonces era un joven de 30 años, le envió una carta al gran matemático Gottlog Frege, uno de los creadores de la lógica simbólica, en la que le planteaba una paradoja que generaba una contradicción en su sistema de axiomas (ver explicación sencilla). Frege había publicado ya un primer tomo tratando de sistematizar toda la matemática en base a la pura lógica, pero al recibir la carta de Russell se dio cuenta que la obra de sistematización, que le había empleado toda su vida, quedaba en entredicho. Así lo reflejó, con tristeza, al publicar su segundo tomo en el que debía concluir su labor sistematizadora.

Al cabo de unos años (1913), el propio Rusell y otro gran matematico, Alfred North Whitehead, trataron de reparar el daño hecho por su paradoja, al formidable edificio de la lógica matemática, escribiendo una obra monumental que titularon Principia Mathematica. Llegaron a desarrollar un sistema matemático de axiomas y reglas de inferencia, cuyo propósito era el que fuera posible traducir en su esquema todos los tipos de razonamientos matemáticos correctos. Todo estaba especialmente cuidado para impedir los tipos de razonamiento paradójico que conducían a la propia paradoja de Russell. Posteriormente, el matemático David Hilbert se embarcó en la tarea de establecer un esquema mucho más manejable y comprensible. Se incluirían todos los tipos de razonamientos matemáticamente correctos para cualquier área matemática particular. Además, pretendía que fuera posible demostrar que el esquema estaba libre de contradicciones. Entonces, las matemáticas estarían situadas, para siempre, sobre unos fundamentos inatacables.
Pero en 1931 Kurt Gödel, un joven matemático austríaco de 25 años, publicó su famoso artículo" Sobre proposiciones formalmente no decidibles en Principia Mathematica y sistemas relacionados" y desmontó, definitivamente, la soberbia estructura montada sobre la lógica matemática, que se suponía completa. Destrozó el programa planeado por Hilbert, porque demostró que cualquiera de estos sistemas matemáticos precisos (formales) de axiomas y reglas de inferencia (finitos), siempre que sea lo bastante amplio para contener descripciones de proposiciones aritméticas simples y siempre que esté libre de contradicción, debe contener algunos enunciados que no son demostrables ni indemostrables con los medios permitidos dentro del sistema. De hecho, por sorprendente que parezca, Gödel demostró que el mismo enunciado de la consistencia del propio sistema axiomático debe ser una de esas proposiciones indecidibles.

Gödel nos descubrió que la verdad es una categoría superior a la demostrabilidad, y que su argumento nos da la posibilidad, mediante intuición directa, de ir más allá de las limitaciones de cualquier sistema matemático formalizado. Penrose utiliza el argumento de Gödel para demostrar el funcionamiento no algorítmico de la mente. El sistema matemático más perfecto que podamos conseguir, con un número finito de axiomas y reglas de inferencia, es incapaz por principio de probar la verdad/falsedad de enunciados que nosotros, desde fuera del sistema, advertimos sin demasiada dificultad. Un ordenador basado en la programación automática que conocemos, a base de algoritmos matemáticos, tiene una limitación fundamental independiente de que el programa sea mejor o peor o que su memoria y capacidad de cálculo sean de mayor o menor potencia.

Nota (última edición -11 h. 3 junio,2007):

Entre las numerosas demostraciones del teorema de Gödel que han aparecido, es muy interesante la demostración que ha hecho Gregory Chaitin con base en argumentos de la teoría de la información. Con este lenguaje, la forma del enunciado del teorema sería:

" Si un teorema contiene más información que un conjunto dado de axiomas, entonces es imposible derivar dicho teorema a partir de los axiomas".

Tanto en física como en matemáticas la información es una magnitud fundamental que nos puede guiar por caminos, aparentemente, impracticables. La teoría de la información, por ejemplo, nos acota la cantidad de información que puede contener una determinada región del espacio, pues está íntimamente relacionada con la entropía. (Ver la entrada: ¿Universo holográfico?)



Página web: Sobre el Teorema de Gödel, de la Universidad Autónoma de México (también en PDF)

Libro: " La nueva mente del emperador" de Roger Penrose. Ver el apartado en que utiliza el argumento de Gödel para demostrar el funcionamiento no algorítmico de la mente.