Mostrando entradas con la etiqueta dimensión fractal. Mostrar todas las entradas
Mostrando entradas con la etiqueta dimensión fractal. Mostrar todas las entradas

2018/07/11

Algo más sobre los fractales, su dependencia espacial


La dimensión de un fractal está íntimamente relacionada con la manera en que éste se extiende por el espacio. Su dimensión nos da la capacidad del fractal de recubrir un espacio de dimensión topológica superior a la suya, de hecho, una trayectoria fractal de dimensión 2 es capaz de recubrir el plano, y de dimensión 3 el espacio tridimensional. 


Imaginemos que en un espacio de tres dimensiones nos encontramos con una especie de diablillo virtual moviéndose aleatoriamente, con total libertad, y tratando de recubrirlo por completo. Su trayectoria será una línea quebrada, con infinidad de recovecos, cuyo fin será pasar por todos los puntos del espacio. Como línea de trayectoria que es su dimensión topológica será la unidad, pero su capacidad de recubrir el espacio nos indica que estamos ante un objeto geométrico diferente a los típicos objetos euclidianos que hemos estudiado en la escuela, como el punto, la línea o el plano de dimensiones cero, uno o dos. Este tipo de objetos es lo que Benoît Mandelbrot llamaba en 1975 objetos fractales, palabra que inventó a partir del adjetivo latino “fractus” (roto, fracturado). 

Dimensión fractal. La dimensión que define la trayectoria del diablillo ya no es la dimensión clásica de una línea (la unidad), sino que a ella debemos añadir un coeficiente dimensional que nos indica su grado de irregularidad. La suma de los dos coeficientes nos da un nuevo valor dimensional al que llamamos dimensión fractal. En este caso hacemos la siguiente suma: dimensión geométrica clásica (1) + coeficiente dimensional (2) = dimensión fractal (3). 


Dependencia con la distancia. Hay un detalle más que nos da una idea del movimiento que lleva el diablillo. La distancia total que recorre al cabo de N de sus pasos debe ser sólo la raíz cúbica de su alejamiento efectivo a un punto arbitrario, es decir para alejarse una distancia efectiva d, de un punto cualquiera, su recorrido total deberá ser d3. Este exponente (3) nos está dando, también, la dimensión fractal del movimiento. En cierta forma es lógico que sea así, pues el volumen que intersecta y recubre la trayectoria es del orden del cubo de su distancia característica (Volumen = Lado3). 

En una trayectoria espacial fractal: 

(1) Distancia total recorrida = Distancia efectiva(dimensión fractal) 

Siendo la dimensión fractal igual a la dimensión topológica más un coeficiente dimensional positivo, tanto mayor cuanto más intrincado sea el fractal, la expresión (1) quedaría: 

(1) Distancia total recorrida = Distancia efectiva(dimensión topol. + coef. dimensional) 


¿Puede la geometría del espacio modificar la dimensión fractal?.Imaginemos una trayectoria fractal que pasa desde un espacio de 3 dimensiones a otro de 2. En la realidad podría ser el paso gradual de una tubería de 10 cm. x 10 cm. a otra de 0,1 cm. x 1000 cm., del mismo caudal. Para, depende que movimiento, el paso podría suponer cambiar, prácticamente, de 3 a 2 dimensiones. En la nueva situación la dimensión topológica habría descendido en una unidad, por lo que para el mismo coeficiente dimensional (que depende de la irregularidad del fractal), la nueva dimensión fractal sería menor. La disminución de dimensiones topológicas actúa de forma opuesta (restando) a como actúa el coeficiente dimensional (sumando). Al final obtendríamos, en la práctica, un movimiento menos irregular e intrincado. 


Y sobre todo esto, en plan un tanto informal, añado un articulito que se publicó en la web de la Real Sociedad Española de Física, en el foro de debate sobre Física Divertida . Pocos meses antes se había publicado en la revista ImasD de ciencia y tecnología (revista en papel, posteriormente electrónica y hoy desaparecida: www.ImasD-tecnología.com).Otro articulo posterior, también muy sencillo, publicado por la Revista Elementos, de la Universidad Autónoma de Puebla: El sorprendente vacío cuántico. 


El diablo Aleaxis y el efecto de ocultación de masa.
Aleaxis es un simpático e inconsciente diablillo que no para de dar pasos, a tontas y a locas de forma aleatoria, en cualquier dirección del plano. Su trayectoria es discontinua, puede ser representada por una línea quebrada que acabaría recubriendo todo el plano. En su torpeza, para recorrer una distancia efectiva de “n” pasos debe dar como media n x n , es decir n2pasos: su trayectoria, en realidad, representa un fractal, una estructura quebrada y discontinua de dimensión 2, la dimensión fractal que caracteriza al azar puro.

De forma similar, las fluctuaciones de energía del vacío (principio de incertidumbre) representan a otro diablo, esta vez real y poderoso, que hace mucho más interesante nuestro universo. Sin él el vacío estaría vacío, además de parecerlo, sería plano y estaría absolutamente quieto. Este diablo, un tanto escurridizo y nada torpe, arruga el espacio-tiempo y lo convierte en un fractal similar a la trayectoria de Aleaxis. Esta vez, para que nosotros observemos “n pasos” de fluctuación efectiva de energía, el diablo “da“ n x n x n pasos, es decir n3 .

Observando, solamente, los pasos efectivos de Aleaxis y sabiendo que su trayectoria es un fractal podemos inferir que existe un “efecto de ocultación de pasos”. De la misma forma, al observar las fluctuaciones efectivas de energía del vacío (son las únicas que podemos observar) deducimos que hay un poderoso “efecto de ocultación de energía “ (o masa, por el principio de equivalencia entre masa y energía).

El poderoso diablo de las fluctuaciones, además de arrugar el espacio-tiempo, enrolla parte de sus dimensiones para acentuar el “efecto de ocultación”. Si sólo se limitara a arrugarlo las fluctuaciones de la energía interferirían lo suficiente para no dejarnos ver el vacío como tal (al no depender del inverso de la distancia sino de su raiz cúbica). En la realidad dependen del inverso de la distancia: a grandes distancias su valor es despreciable, a pequeñas distancias es impresionantemente grande, contribuyendo a la impresión de un paradójico vacío “superdenso”. El diablo actúa como un verdadero mago: esconde ingentes cantidades de masa, detrás de sus arrugas enrolladas, hasta que hace “aparecer” el vacío. Sólo al acercarnos, “en las pequeñas distancias “, advertimos su truco. 



Reedición de un post de 2009. Un abrazo amigos.

2016/03/02

Las dimensiones extras. ¿Podemos demostrar que existen dimensiones enrolladas?


LHC

Según la teoría de supercuerdas en nuestro mundo existirían nada menos que 10 dimensiones, una dimensión temporal y  9 dimensiones espaciales. De estas dimensiones espaciales 3 serian las dimensiones ordinarias, que conocemos, y las otras 6 estarían enrolladas sobre sí mismas, alrededor de una distancia mínima llamada distancia de Planck, por lo que no serian observables.

Se han diseñado experimentos para tratar de descubrirlas en base a resultados anómalos sobre la atracción gravitatoria de masas a distancias microscópicas o  en  la violación de la conservación de la energía en colisiones en los aceleradores de partículas. También existe la posibilidad de que los mapas, cada vez más detallados, de la energía cósmica liberada en el Big Bang nos indiquen la huella de las dimensiones extras.

Pero puede que exista otra posibilidad de demostrar la existencia de dimensiones extra. Vamos a estudiar un curioso fenómeno que se da en sistemas fractales con un número grande de dimensiones. Partiendo de la hipótesis de que la energía de las fluctuaciones cuánticas del vacío tienen una estructura fractal, este fenómeno nos presentaría las dimensiones extra de una forma natural.

LHC

La dimensión fractal

La característica más especial de los fractales es su dimensión. Siempre es positiva y superior a su dimensión topológica. En cierta manera, de forma intuitiva nos indica la dimensión del espacio que son capaces de ocupar. Una cuartilla es un ejemplo de objeto de dimensión topológica 2, pero si la
arrugamos conseguimos que ocupe un espacio de mayor dimensión, entre 2 y 3 (normalmente fraccionario). Lo mismo ocurre con una línea (dimensión 1) que si la hacemos lo suficientemente intrincada e irregular es capaz de ocupar un plano (dimensión 2) e incluso un espacio (dimensión 3). Si la línea llega a ocupar el plano su dimensión fractal será 2 y si ocupa el espacio tridimensional, su dimensión fractal será 3. Conforme mayor sea su dimensión fractal, más intrincado e irregular será el fractal: a su dimensión topológica se le suma un coeficiente dimensional que completa el valor de su dimensión. Este coeficiente, normalmente fraccionario, nos indica el grado de irregularidad del fractal.
Dimensiones enrolladas
Dependencia espacial en los fractales

La líneas fractales gozan de una característica notable con relación a su dependencia espacial: una línea fractal capaz de recubrir el plano, para alejarse de cualquier punto arbitrario una distancia efectiva L debe recorrer una distancia media L2. A otra línea fractal capaz de llenar el espacio le ocurre algo similar: para alejarse de cualquier punto arbitrario una distancia efectiva L, deberá recorrer, como media, una distancia total L3. Es decir, el valor de los exponentes 2 y 3 se corresponde con las dimensiones fractales de las líneas.
Sabiendo la dimensión del fractal podemos calcular su dependencia espacial y a la inversa. Lo que ocurre con las curvas fractales (dimensión topológica 1) lo podemos generalizar a cualquier estructura fractal con mayor dimensión topológica (siempre que sea continua y razonablemente isótropa), dividiendo su dimensión fractal por su dimensión topológica.
Reducimos así la dispersión de resultados y encontramos más fácilmente símiles con ejemplos sencillos como trayectorias unidimensionales. A este cociente le llamaremos dimensión fractal relativa:

Dim. frac. relativa = (dimens. topológica+ coef. dimensional )/(dimens. topológica).
                                                     Dfr= (d+e)/d

En nuestro caso conocemos que la energía asociada al vacío depende inversamente de la distancia (L-1). Si fuera una simple línea (dimensión 1) encontraríamos que su dimensión fractal sería -1, pero como la energía es una magnitud tridimensional su dimensión fractal será -3, lo que obedece a un coeficiente dimensional negativo e igual a -6.

Tanto la dimensión fractal como el coeficiente dimensional negativos son resultados anómalos que obedecen a una causa sorprendente que estudiaremos a continuación. Siempre en base a la hipótesis fractal de las fluctuaciones que hemos planteado.
Volvamos a fijarnos en una simple hoja de papel que supondremos de espesor despreciable. Si la arrugamos estamos “fabricando” un fractal con dimensión mayor de 2 y menor de 3, es decir estamos sumando a su dimensión topológica un factor dimensional tanto mayor cuanto más intrincado sea su arrugamiento. ¿Pero qué ocurre si sobre la hoja lisa, sin arrugar, realizamos la operación de enrollarla sobre uno de sus extremos de la forma más fina posible?: A su dimensión topológica 2 le habremos restado una de sus dimensiones. En cierta forma, estamos realizando una operación con resultados opuestos al arrugamiento. En un caso se suma un factor dimensional y en el otro se resta.
Si sobre la expresión de la dimensión fractal relativa aplicamos la siguiente transformación de resta de dimensiones, que llamaremos T:

T: Valor (dimens. topológica) --> Valor (dimens. topológica – coef. dimensional),
                                                  T: (d) --> (d-e)

obtenemos la siguiente expresión para un universo con el mismo valor de dimensiones enrolladas que de coeficiente dimensional:


Dim. fractal relativa = (dimens. topológica)/(dimens. topológica – coef. dimensional).
                                                     Dfr= d/(d-e)

Si a esta expresión le igualamos el valor (-1) encontramos que el resultado anómalo obtenido se correspondería al de un universo con 6 dimensiones enrolladas y con un factor dimensional, también, de 6 (d= dimensión topológica=3).


Un poco más sobre el tema, visto de otra forma.

2009/04/16

Fractales contra dimensiones enrolladas, una "oposición" geométrica

Arrugar, romper o fracturar la continuidad clásica para aumentar la capacidad de un objeto de ocupar espacio, o enrollarlo para disminuir dicha capacidad. He aquí la cuestión, aparentemente trivial, que puede llevarnos a entender mejor el propio nacimiento de nuestro Universo.


Geometría fractal. La geometría sobre puntos, rectas, planos y demás objetos geométricos que se nos enseña en la escuela no es más que una abstracción, muy útil, sobre objetos reales de nuestra vida cotidiana. Cualquier superficie de la vida real, por muy perfecta que nos parezca nunca es un plano geométrico perfecto. Conforme la observemos con más y más aumento repararemos en un montón de imperfecciones que la van alejando de la geometría euclidea que nos han enseñado y la acercan, cada vez más, a una nueva geometría más cercana a la realidad que llamamos geometría fractal.


Imaginemos que en un espacio de tres dimensiones nos encontramos con una especie de diablillo virtual moviéndose con total libertad y tratando de recubrirlo por completo. Su trayectoria será una línea quebrada, con infinidad de recovecos, cuyo fin será pasar por todos los puntos del espacio. Como línea de trayectoria que es su dimensión topológica será la unidad, pero su capacidad de recubrir el espacio nos indica que estamos ante un objeto geométrico diferente a los típicos objetos euclidianos que hemos estudiado en la escuela, como el punto, la línea o el plano de dimensiones cero, uno o dos. Este tipo de objetos es lo que Benoît Mandelbrot llamaba en 1975 objetos fractales, concepto que había inventado a partir del adjetivo latino “fractus” (roto, fracturado). Posteriormente, en 1982, publicó el libro “The Fractal Geometry of Nature”, en donde proponía : “Un fractal es, por definición, un conjunto cuya dimensión de Hausdorff-Besicovitch es estrictamente mayor que su dimensión topológica.”


Dimensión fractal. La dimensión que define la trayectoria del diablillo ya no es la dimensión clásica de una línea (la unidad), sino que a ella debemos añadir un coeficiente dimensional que nos indica su grado de irregularidad.La suma de los dos coeficientes nos da un nuevo valor dimensional al que llamamos dimensión fractal. En este caso hacemos la siguiente suma: dimensión geométrica clásica (1) + coeficiente dimensional (2) = dimensión fractal (3).


Dependencia con la distancia. Hay un detalle más que nos da una idea del movimiento que lleva el diablillo. La distancia total que recorre al cabo de N de sus pasos debe ser sólo la raíz cúbica de su alejamiento efectivo a un punto arbitrario, es decir para alejarse una distancia efectiva d, de un punto cualquiera, su recorrido total deberá ser d 3. Este exponente (3) nos está dando, también, la dimensión fractal del movimiento. En cierta forma es lógico que sea así, pues el volumen que intersecta y recubre la trayectoria es del orden del cubo de su distancia característica (Volumen = Lado3).


¿Que tiene que ver todo esto con las dimensiones enrolladas? Supongamos una manguera vista desde una distancia de doscientos metros. A todos los efectos prácticos sólo vemos una línea y una sola dimensión característica, su longitud. Un objeto tridimensional, aunque con dos dimensiones significativas en el orden práctico se ha convertido en una linea unidimensional. Mejor aún, para poder visualizar más fácilmente la "oposición" geométrica a la que se refiere el título del post, imaginemos una lámina superfina (despreciamos su espesor) de un material moldeable. Cuando la lámina está perfectamente extendida, y sin arrugas, tenemos un objeto geométrico con dos dimensiones. Si la arrugamos y comprimimos convenientemente hasta conseguir una bola tendremos un objeto con tres dimensiones significativas, por lo que habremos aumentado en una su dimensión inicial. Si, por el contrario, la enrollamos perfectamente hasta formar un tubo muy fino obtendremos un objeto unidimensional, una línea, y habremos disminuido en una su dimensión inicial. En cierta forma vemos que realizamos operaciones opuestas, geométricamente hablando. Una suma dimensiones (fractalizar) y la otra resta (enrollar).


¿Tiene algún sentido práctico todo esto? Puede tenerlo, y mucho. Imaginemos un fractal con una dimensión típica Dfr cuyas características dependen de la distancia, como hemos visto dos párrafos antes, según dDfr. Si lo recluimos en una trampa cuántica en dos dimensiones (hemos disminuido en una las dimensiones del espacio), su nueva dependencia será dDfr-1. Será un fractal más estable, menos irregular en la medida en que también es más pequeña su dimensión fractal. Siempre de forma hipotética, de forma casual me di cuenta de que en un universo emergente esta simple cuestión geométrica pudo tener mucho que ver en la estabilidad que presenta, en la actualidad, el vacío cuántico. Para un vacío cuántico cuyas fluctuaciones de energía fueran un fractal de dimensión (3 + 6), unas supuestas dimensiones enrolladas que nos dejaran un espacio de (9 - 6) dimensiones (6 enrolladas) contribuirián decisivamente a su estabilidad. En el momento clave en que debían quedar definidas las constantes típicas de este universo (la propia naturaleza del cuanto), las supuestas dimensiones enrolladas pudieron tener un papel primordial, puramente geométrico, en su definitiva fijación. (Ver en la Revista Elementos de la Universidad autónoma de Puebla, un esbozo de esta teoría)

2008/09/24

Fractales, una geometría natural

La geometría tan intuitiva que nos enseñan en la escuela, basada en líneas, puntos y superficies supone, en realidad, un gran esfuerzo de abstracción porque estos elementos idealizados no existen en el mundo cotidiano. Una línea real o una superficie están llenas de irregularidades que pasamos por alto para abstraer su esencia y plasmarla en conceptos más sencillos como recta y plano.


Con los fractales, en cierta manera, deshacemos esa abstracción y nos acercamos un poco más al objeto real. Benoït Mandelbrot utiliza el ejemplo sencillo de un objeto real, como son las costas de los países, para aproximarnos a los fractales. Son líneas quebradas que siguen teniendo un aspecto parecido cuando cambiamos de escala. Precisamente estas dos propiedades son las que definen a un fractal: discontinuidad (rotura, fractura, de ahí su nombre) y autosemejanza con el cambio de escala. Medimos su grado de fractura e irregularidad con un simple número que llamamos dimensión fractal.

Repasando intuitivamente el concepto de dimensión, observamos que un punto no tiene medida (dimensión cero); a una recta la medimos en metros o centímetros lineales, lo que significa asignarle dimensión uno (una sola medida: largo); a una superficie la debemos medir en metros o centímetros cuadrados (dimensión dos: largo por ancho) y a un volumen lo medimos en metros o centímetros cúbicos (dimensión tres: largo por ancho por alto). Un fractal, generalmente, tendrá una dimensión (su dimensión fractal) que estará entre cero y uno, entre uno y dos o entre dos y tres.


Supongamos el caso más sencillo, una recta fractal representada por un hilo arrugado, e imaginemos que tiene dimensión fractal 1,25. Si otro hilo tiene dimensión fractal 1,35, la simple comparación de sus dimensiones fractales supone que este segundo hilo está más arrugado que el primero, presenta más irregularidades. La parte entera de la dimensión fractal (en este caso 1) nos está informando que el objeto con el que tratamos es una recta, la parte fraccionaria nos mide su grado de irregularidad.

La dimensión fractal también da la capacidad que tiene el objeto de ocupar el espacio. El hilo con dimensión fractal 1,35 es capaz de llenar el plano mejor que el de dimensión 1,25. De hecho, si seguimos arrugándolo más aumentaremos su dimensión fractal y cuando esté cercana a 2 habremos conseguido llenar, casi por completo, una superficie con el hilo. Un fractal clásico de este tipo es la llamada curva de Peano.


Los fractales son objetos esencialmente sencillos, se generan fácilmente por ordenador. Mediante muy pocas órdenes de programación, y a partir de un número mínimo de datos, se crean verdaderas maravillas de una riqueza y complejidad extraordinarias. El fractal de Mandelbrot es un ejemplo. Conforme intentamos ampliar, con medios informáticos, cualquiera de sus partes nos encontramos con un nuevo paisaje similar al original pero con nuevos y sorprendentes detalles. Podemos seguir así cuanto deseemos y nos permita la potencia de nuestro ordenador, se nos seguirá mostrando un nuevo mundo fantástico, que nunca llega a repetirse, en cada nueva ampliación. Un mundo surgido casi de la nada, de una sencilla expresión que se encadena y realimenta con nuevos datos.


Valor posterior = (valor anterior)2 + constante (Con una condición restrictiva).


La observación de estos fractales creados por ordenador, nos recuerda siempre a algún objeto natural desconocido pero cercano, posiblemente, porque esa economía de medios para lograr complejidad es una característica muy propia de la Naturaleza. Es la estrategia adoptada para lograr la mejor distribución de los vasos sanguíneos por todo el cuerpo, la disposición óptima del ramaje de los árboles o de los pliegues del cerebro para conseguir la mayor superficie en el mínimo espacio.


De mi colaboración con Libro de Notas, columna mensual "Ciencias y letras"

2006/10/26

Vacío cuantico, vacío fractal

El vacío estable y absoluto de Newton, con trayectorias continuas y determinadas, ha dejado paso al vacío cuántico asociado a unas extrañas trayectorias (*) discontinuas y fracturadas, llamadas por ello trayectorias fractales ( no son propiamente trayectorias). La existencia del cuanto de acción o constante de Planck ( se llama acción al producto de una energía por un tiempo ), base de la física cuántica, es la causa de ese cambio fundamental, y de otros muchos, con profundas consecuencias. Mediante la geometría fractal, este nuevo marco nos ofrece nuevas e interesantes perspectivas.


La existencia del cuanto de acción supone, realmente, la desaparición del vacío como tal. La mínima energía posible en el espacio (fluctuaciones cuánticas) deja de ser cero para pasar a depender del inverso de la distancia considerada. A la menor distancia posible (longitud de Planck = 10-35 metros) , se le asocia una energía considerable, equivalente a una masa de 0,00002 gramos, y si mantuviéramos la misma relación, la masa correspondiente a un metro sería del orden de 1,2 x1024 toneladas. Pero la propia existencia del mínimo cuanto de acción - principio de incertidumbre - determina que las fluctuaciones de energía del vacío queden acotadas, y sean cada vez menores conforme aumenta la distancia. Para las distancias macroscópicas, cotidianas para nosotros, son prácticamente nulas.

El vacío plano y estable ha dejado paso a un vacío cuántico modulado por sus fluctuaciones de energía que le dotan de una estructura fractal, discontinua. Dicha estructura, aparentemente extraña en la teoría, es por el contrario de lo más común en el mundo real. Cualquier superficie , por ejemplo, por lisa que nos parezca, al examinarla con un aumento progresivo la observaremos cada vez con mayores imperfecciones, hendiduras y discontinuidades. Ocurre con cualquier objeto del mundo real, la esfera, el cubo, o la línea perfecta no existen . No dejan de ser simplificaciones convenientes a las que asociamos conceptos sencillos y fáciles de manipular. Sin embargo las simplificaciones nos pueden ocultar detalles decisivos.

Supongamos que queremos recorrer, a pie, la distancia entre dos puntos determinados. Si la medimos sobre un plano, en línea recta, encontraremos una distancia determinada que se verá ampliamente superada cuando hagamos el trayecto en la realidad. Tendremos que subir, bajar, desviarnos un montón de veces de la trayectoria teórica preestablecida sobre el plano.En la realidad, habremos seguido una trayectoria fractal. Si ese mismo viaje lo hubiera hecho una hormiga, su trayectoria habría sido mucho más irregular que la nuestra y la distancia a recorrer mucho mayor , porque el paso de la hormiga es considerablemente menor que el humano.

Dimensión fractal = dimensión topológica + factor dimensional

( El factor dimensional, siempre positivo, es tanto mayor cuanto más irregular es el fractal)


En una línea perfecta eso no ocurre, pero en una trayectoria fractal si. Una línea teórica tiene dimensión topológica o aparente igual a la unidad, pero para una línea fractal existe un factor dimensional positivo , que se suma a la dimensión aparente para constituir la que llamamos dimensión fractal. Conforme sea más discontinuo e irregular un fractal mayor será este factor y , por tanto, mayor su dimensión fractal.


(En la figura ( representación del vacío cuántico), los trazos más anchos se corresponden con fermiones( quarks, electrones...) y sus antipartículas, mientras que los trazos más finos corresponden a bosones (gluones, fotones, W+, W-, Z0,...). En lo concerniente al color de los quarks y gluones, se corresponden con la carga de color de los mismos mientras que las partículas insensibles a la interacción fuerte aparecen en blanco o gris.)


(*) De hecho, no son propiamente trayectorias, las trayectorias clásicas no existen en mecánica cuántica .Concretamente, su dimensión fractal es 2 , pues por curioso que parezca existen fractales con dimensión entera.


(Reedición, ampliada, del post de fecha 06/06/2006 )

2006/08/05

¿Blogesfera fractal? Un esbozo.


Supongamos una comunidad de blogs de N miembros. Si consideramos la relación entre estos miembros, nos encontramos con dos situaciones límites:
(a)Cada miembro de esa blogesfera sólo accede a su blog.
(b)Cada miembro accede a todos los blogs.
Definiremos la magnitud Riqueza de la comunidad (Rc) como el número total de blogs visitados cotidianamente, por cada miembro, por el total N. En el primer caso Rc tendrá el valor N y en el segundo caso el valor NxN = N^2 ( es decir, N cuadrado).

La representación geométrica del primer caso podría ser la recta natural con N puntos.El segundo caso sería un cuadrado de NxN puntos. Pero la realidad está entre los dos extremos.Una recta tiene dimensión 1, un cuadrado ( una superficie) tiene dimensión 2. La realidad que expresa la Riqueza de la comunidad quedará representada por una recta fractal de dimensión intermedia entre 1 y 2.

En la realidad se establece una jerarquía entre los blogs: los hay más visitados y los hay menos visitados, por ser menos interesantes. Esto va a determinar, realmente, la Riqueza. Para una comunidad de 10.000 miembros los blogs más vistos, estimo que pueden ser entre 100 y 10 lo que determinaría una dimensión fractal entre 1,25 y 1,50.

Una definición muy intuitiva de dimensión fractal, se establece al considerar que nos da idea de la parte del espacio ocupado. Una recta ocupa un espacio de dimensión 1, pero si dicha recta está llena de irregularidades ocupa parte de la superficie que la contiene. En nuestro caso el coeficiente que llamamos dimensión fractal indica que se está ocupando parte del cuadrado NxN.

Para que se pueda aplicar esta geometría hace falta que a diferentes escalas se mantenga la misma dimensión. Es decir para 1000000 miembros, por ejemplo, el número máximo de blogs más vistos tendrían que ser del orden de 1000. Esta invarianza de escala suele mantenerse en los procesos complejos, dependientes de factores muy diversos, relacionados con la actividad humana a grandes escalas ( fluctuaciones de la bolsa o de precios, por ejemplo).

2006/06/30

Curva de Koch y vacío cuántico

La curva de Koch es un fractal clásico que nos puede orientar sobre el procedimiento de cálculo de la dimensión fractal. En la figura observamos tres iteraciones que nos muestran su construcción: sobre el segmento inicial AB volvemos a construir la figura completa en la segunda iteración y de la misma forma hacemos en la tercera.
El cociente (Log 4)/ (Log 3) da el valor de la dimensión fractal de la figura. El número 4 indica el número de divisiones, mientras que el número 3 es el inverso de la razón de homotecia : el todo es descomponible en 4 partes (segmentos AB,BC,CD,DE) las cuales se pueden deducir de él por una homotecia de razón 1/3 (los cuatro segmentos se proyectan sobre un segmento de longitud 3 : AB,BD,DE).

Si medimos la distancia entre los puntos AE con una regla cuya mínima medida sea 3, obtendremos que dicha distancia es 3. Por el contrario, si medimos la distancia con una regla de mínima distancia 1, la medida AE nos dará como resultado 4. El cociente entre los logaritmos de estos números nos darán la dimensión fractal que apuntábamos más arriba. Es evidente que para un segmento lineal encontraríamos el mismo valor para las dos medidas y el cociente entre sus dos logaritmos sería la unidad, que es la dimensión de una línea recta clásica euclideana.

En la curva de Koch la relación logarítmica de las distancias 4 y 3 nos dan la dimensión fractal. El valor 4 determina el patrón de irregularidad y el valor 3 , en cierta forma, su proyección. Para el vacío cuántico los valores son N y 1/N ( relación, en el post anterior, entre el lado y el perímetro del Ovillo de Alba), lo que nos da una idea de las formidables energías implicadas en lo que llamamos vacío cuántico: para una energía de magnitud N sólo se proyectaría en nuestro espacio tridimensional un valor 1/N.