Mostrando entradas con la etiqueta segunda ley. Mostrar todas las entradas
Mostrando entradas con la etiqueta segunda ley. Mostrar todas las entradas

2008/06/16

Ilya Prigogine, la belleza del caos

"Vamos de un mundo de certidumbres a un mundo de probabilidades. Debemos encontrar la vía estrecha entre un determinismo alienante y un Universo que estaría regido por el azar y por lo tanto sería inaccesible para nuestra razón.
En un mundo donde ya no impera la certidumbre, restablecemos también la noción de valor.
Sin duda en el siglo XXI veremos el desarrollo de una nueva noción de racionalidad donde
razón no estará asociada a certidumbre y probabilidad a ignorancia. En este marco, la creatividad de la naturaleza y sobre todo, la del hombre, encuentran el lugar que les corresponde" -Ilya Prigogine.

Ilya Prigogine, recibió el premio Nobel de Química en el año 1977 por su aporte al conocimiento de las "estructuras disipativas" en el mundo físico, es decir, el estudio de la aparición del orden en condiciones alejadas del equilibrio. El término estructura disipativa busca representar la asociación de las ideas de orden y disipación. El nuevo hecho fundamental es que la disipación de energía y de materia, que suele asociarse a la noción de pérdida y evolución hacia el desorden, se convierte, lejos del equilibrio, en fuente de orden. Estas estructuras están en la base de la vida y en ellas el orden se establece en base a ecuaciones de evolución no lineal, de mucha mayor complejidad que cerca del equilibrio en donde las soluciones son mucho más simples y se pueden linealizar.

Potencialidad:
Lejos del equilibrio existen muchas soluciones, potencialidades que no existen cerca del equilibrio. Esta riqueza nos puede guiar mucho mejor para comprender fenómenos complejos como la historia del clima, de la Tierra y de la propia vida. Todo esto está ligado a una estructura de no equilibrio que era incomprensible desde una perspectiva antigua: el no equilibrio no es sólo degradación, sino también construcción. Ni el tiempo repetitivo de la mecánica ni el tiempo-degradación de la termodinámica clásica pueden explicar la riqueza del mundo tal como lo vemos. La naturaleza inventa. Nada es reversible. Y su dimensión temporal dista de agotarse en la concepción matemática de un tiempo absoluto, como la concepción abstracta de la mecánica clásica. En los sistemas sencillos no caóticos su atractor, una especie de representación de sus variables dinámicas, es una figura geométrica simple o un punto, mientras que en los caóticos son figuras de una complejidad extraordinaria llamados atractores extraños. De esa complejidad se pueden extraer infinitas posibilidades para la evolución futura del sistema.

Los mecanismos de organización en las estructuras disipativas sólo pueden aparecer cuando el medio externo mantiene, mediante la aportación energética, el sistema alejado del equilibrio. La estructura es creada y mantenida gracias al intercambio de energía con el exterior. Por eso las llamamos estructuras disipativas. En ciertas condiciones críticas externas, las ínfimas fluctuaciones naturales y constantes de un sistema pueden, en vez de atenuarse, amplificarse y arrastrar el sistema en una u otra dirección. La rama de la bifurcación que escogerá el sistema es imprevisible, pues el fenómeno es aleatorio y parece fruto del azar.

La segunda ley, orden y desorden:
En un sistema aislado, la segunda ley de la termodinámica nos enseña que el desorden, la entropía, aumenta irremediablemente, pero eso no impide que una parte de ese sistema con una aportación de energía y materia de su entorno aumente su orden y disminuya su entropía. La suma total de entropía sigue aumentando, pero esa parte del sistema se organiza a costa de aumentar el desorden a su alrededor. Esa es la historia esencial de los organismos vivos. Cuando las condiciones externas cambian y se vuelven extremas el organismo entra en crisis y aparecen fenómenos aleatorios de bifurcación que le dan opciones de supervivencia. El sistema elige una de las opciones que se adaptará mejor o peor a las nuevas condiciones. Si elige bien vuelve a encontrar un periodo de estabilidad regido por el orden, si vuele a entrar en crisis volverá el desorden y la nueva elección.

Hasta Prigogine, la ciencia pensaba que la vida era una especie de casualidad, un raro fenómeno difícil de reproducir, pero con Prigogine hemos aprendido que la materia lejos del equilibrio manifiesta potencialidades imposibles en otras condiciones. La intuición de que era posible elaborar una termodinámica general de sistemas vivos o abiertos y de sistemas cerrados, aislados e inertes, le valio a Ilya Prigogine el Premio Nobel de Química.


Para leer más:

-- Posts sobre el tema. Más Posts.

-- El libro de Arnaud Spire. " El pensamiento de Prigogine. La belleza del caos". Ed. Andrés Bello. Barcelona. 2000.

2008/04/06

Biografía del calor

El primer hombre que habló del calor como una entidad física definida que puede medirse como la cantidad de agua o de aceite, fue un médico escocés llamado James Black (1728-1799). Consideraba el calor como cierto fluido que llamó "calórico", capaz de penetrar todos los cuerpos materiales aumentando su temperatura. Al mezclar un volumen de agua hirviendo con otro volumen igual de agua helada observó que la temperatura de la mezcla era, exactamente, la media entre las dos temperaturas iniciales. Su interpretación era que el exceso de "calórico" del agua hirviendo se había repartido por igual entre las dos partes. Definió la unidad de calor como la cantidad necesaria para elevar la temperatura de una libra de agua un grado Farenheit ( en el sistema métrico moderno se habla de "caloría" como la unidad de calor capaz de elevar un grado centígrado la temperatura de un gramo).Además de la definición original de "caloría" introdujo la noción de capacidad calorífica y de calor latente.

La analogía entre calor y un fluido fue desarrollada todavía más por Sadi Carnot, que comparaba la máquina de vapor con una rueda hidráulica. De la misma forma que la caída del agua desde gran altura es capaz de empujar la rueda, suponía que el calor era un fluido que actuaba de forma semejante al pasar de un punto de mayor temperatura (caldera) a otro de menor temperatura (refrigerador).

Sin embargo el calor es movimiento, y esta idea se le ocurrió a un soldado profesional, Benjamin Thomson nacido en Massachussetts, y fue desarrollada por experimentos realizados en una fábrica de cañones. No estaba convencido de que el calor fuera una cierta sustancia semejante a todas las demás. La razón de sus dudas era el hecho de que el calor se produce de la nada, mediante la fricción como había comprobado en innumerables ocasiones en la fábrica de cañones, o como comprobamos en acciones tan cotidianas como la de frotarnos las manos. En su artículo en London PhilosophicalTransactions (1799) escribía:"¿Qué es el calor. No puede ser una sustancia material. Me parece difícil, si no absolutamente imposible, imaginarme que el calor sea otra cosa que aquello que en este experimento (perforación del cañón) estaba siendo suministrado continuamente al trozo de metal cuando el calor aparecía, a saber, movimiento."

Las ideas de Thomson fueron desarrolladas varias décadas después por el físico alemán Julius Robert Mayer en su artículo "Observaciones sobre las fuerzas de la naturaleza inanimada, publicado en 1842. Mayer dispuso un experimento en una fábrica de papel donde la pulpa contenida en una gran caldera era removida por un mecanismo movido por un caballo.Pero quien, finalmente, llegó a medir el equivalente mecánico del calor por un método parecido fue el inglés James Prescott Joule. Joule estableció que hay una proporcionalidad directa entre el trabajo realizado y el calor producido. En 1843, al anunciar el resultado de sus estudios, escribía: "El trabajo realizado por un peso de una libra que desciende 772 pies en Manchester, elevará la temperatura de una libra de agua en un grado Farenheit". Esta es la cifra que, expresada en estas u otras unidades, se usa ahora universalmente siempre que se ha de traducir la energía térmica en energía mecánica o viceversa.

Incluso una idea equivocada, el pensar que el calor era una sustancia fluida capaz de atravesar todos los cuerpos, fue útil en su tiempo y dio lugar a una interpretación intuitiva y muy interesante sobre el funcionamiento de la máquina de vapor. Pero fue el experimento, la capacidad de contrastar las ideas con la realidad, lo que le dio la clave a Thomson de que el calor no era una sustancia, una clase de fluido, sino movimiento. Joule, finalmente, encontró la relación exacta entre el calor y la energía mecánica que lo genera. A partir de ahí, en la segunda mitad del siglo XIX, comenzó el estudio de la comprensión de las leyes que permiten transformar la energía mecánica en calorífica y viceversa por científicos tan relevantes como el físico alemán Rudolph Clausius y el inglés Lord Kelvin. Finalmente quedaron establecidas la primera y la segunda ley de la termodinámica, o estudio de la circulación de la energía calorífica y de cómo produce movimiento.

Del clásico de la divulgación: "Biografía de la física", de George Gamow. Biblioteca General Salvat.







En memoria de Francisca Miquel Silla, me consta que fui más hijo que yerno para ella, y ella fue más madre que suegra para mi. Descanse en paz.

2007/07/24

La muerte del universo

El físico y astrónomo inglés sir James Jeans escribió sobre la muerte final del universo, que él denominó "muerte térmica", a comienzos del siglo XX : "La segunda ley de la termodinámica predice que sólo puede haber un final para el universo, una "muerte térmica" en la que la temperatura es tan baja que hace la vida imposible". Toda la energía tenderá a acabar en la forma más degradada, la energía térmica; en un estado de total equilibrío termodinámico y a una temperatura cercana al cero absoluto, que impedirán cualquier posibilidad de extracción de energía útil. Será el desorden más absoluto (la máxima entropía) del que ya no se podrá extraer orden (baja entropía).

En esta "muerte térmica" del universo, el factor más importante lo marcará la segunda ley de la termodinámica, que afirma que cualquier proceso crea un incremento neto en la cantidad de desorden o entropía del universo. Esta ley que rige para el universo entero es una parte cotidiana de nuestras vidas. Al echar leche en una taza de café, por ejemplo, el orden que representaba las dos tazas separadas de café y leche se ha transformado en un desorden representado por una mezcla aleatoria de café y leche. La tendencia a mezclarse es la más natural (aumento de desorden o entropía), lo contrario, el desmezclarse es practicamente imposible y necesitaría de una serie de procesos que tomarían orden del entorno para devolver más desorden. Al final el resultado total sería más desorden, aunque en una región limitada podríamos haber obtenido más orden.

La entropía esta aumentando incesantemente en las estrellas tanto como en nuestro planeta. Esto significa que, con el tiempo, las estrellas agotarán su combustible nuclear y morirán, convirtiéndose en masas muertas de materia nuclear. El universo se oscurecerá a mediad que las estrellas, una a una, dejen de centellear. Todas las estrellas se convertirán en agujeros negros, estrellas de neutrones o estrellas enanas frías (dependiendo de su masa) en menos de 1024 años a medida que sus hornos nucleares se apaguen. En menos de 1032 años, según las Teorías de Gran Unificación (GUT) los protones y los neutrones probablemente se desintegraran, por ser inestables en grandes escalas de tiempo. Eso significa que toda la materia tal como la conocemos, nuestros cuerpos, la Tierra o el sistema solar se desintegrará en partículas más pequeñas tales como electrones y neutrinos.

Despues de un periodo, practicamente inimaginable en nuestra escala temporal, de 10100años (un gugol)(***) la temperatura del universo se acercará al cero absoluto, pero incluso en un universo desolado y frío, a temperaturas próximas al cero absoluto, existe una última fuente remanente de energía: los agujeros negros. Según Hawking, no son completamente negros, dejan escapar energía lentamente al exterior. En este futuro distante, podrían ser preservadores de la vida porque evaporarían energía lentamente. Las civilizaciones inteligentes, se reducirían a patéticos y míseros puestos fronterizos agarrándose a un agujero negro.

Pero ¿y después de 10100años, cuando los agujeros negros en evaporación hayan agotado la mayor parte de su energía?. Esta cuestión puede carecer de sentido con el conocimiento actual. Los astrónomos John D. Barrow de la Universidad de Sussex y Joseph Silk de la Universidad de California en Berkeley indican que la teoría cuántica, en esta escala de tiempo tan formidable, deja abierta la posibilidad de que nuestro universo pueda pasar, por ejemplo, por una especie de efecto túnel a otro universo. En esta escala de 10100años ya no puede descartarse este tipo de raros sucesos cuánticos cósmicos.


Estos astrónomos añaden, en plan optimista:"Donde hay teoría cuántica hay esperanza. Nunca podemos estar completamente seguros de que esta muerte térmica tendrá lugar porque nunca podemos predecir con completa certeza el futuro de un universo mecanocuántico; pues en un futuro cuántico infinito todo lo que puede suceder, llegará a suceder".







(***) Este valor sólo es comprensible en una comparación a escala logarítmica, en que convertimos el 10 en 1, el 1000 en 3, ó el 10.000 en 4. En esa escala la edad de un niño de 10 años, sería a la edad del universo actual, como esta sería al valor de un gugol.






Fuente:"Hiperespacio", de Michio Kaku.CRÍTICA, Barcelona. 1996. Un libro que no sólo es tan divertido como un relato de ciencia ficción, sino mucho más fantástico.Es como un anticipo de la ciencia que nos deparará este siglo XXI. Escrito por el Dr. Kaku de la City University de Nueva York.

2007/07/03

Las estrellas, fuente de orden y baja entropía

Necesitamos reemplazar la energía que perdemos continuamente, en forma de calor, para mantener nuestra temperatura y el funcionamiento de nuestros órganos. Pero hay algo más que un simple aporte de energía externa, el calor es la forma más desordenada de energía (la energía con mayor entropía), y, necesitamos cambiar la enegía del calor que perdemos, con alta-entropía, por la energía con baja entropía procedente de nuestros alimentos y del oxígeno que respiramos. La organización de nuestro cuerpo, y no sólo la energía, procede de ese imprescindible intercambio. Estamos luchando continuamente contra la segunda ley de la termodinámica, pues la entropía, el desorden, no se conserva, está aumentando todo el tiempo. Y para mantenernos vivos necesitamos reducir la entropía que hay en nosotros.

El suministro de baja entropía procedente de nuestros alimentos tiene su fuente en la fotosíntesis que realizan las plantas verdes. Toman el dióxido de carbono atmosférico, separan el oxígeno del carbono, y utilizan el carbono para formar su propia sustancia. Las plantas verdes son capaces de conseguir reducir la entropía utilizando la luz del Sol. Esta luz trae energía a la Tierra en una forma de baja-entropía: en los fotones de la luz visible. Pero ni la tierra ni los seres vivos, que no realizan la fotosíntesis, son incapaces de retener esta energía y la re-irradian en una forma de alta-entropía llamada calor radiante. Contrariamente a la impresión común, la Tierra no gana, practicamente, energía del Sol. La toma en forma de baja-entropía y la devuelve en forma de alta-entropía. Nosotros, a través de las plantas, tomamos la baja-entropía y la transformamos en las estructuras organizadas que somos nosotros mismos.

Todo esto es posible porque el Sol es un punto caliente en el cielo.Existe un estado de temperatura desigual: una pequeña región, ocupada por el Sol, está a una temperatura mucho más alta que el resto. Este desequilibrio nos proporciona la poderosa fuente de baja entropía que necesitamos. La Tierra obtiene energía de este punto caliente en forma de baja-entropía, por medio de pocos fotones de frecuencia elevada y muy energéticos, de luz visible, y la vuelve a radiar a las regiones frías en forma de alta-entropía, por medio de muchos fotones infrarrojos de baja energía.

Pero si seguimos persiguiendo la fuente última de baja entropía nos encontramos las reacciones termonucleares: la fusión de núcleos de hidrógeno en núcleos de helio para dar energía. Estas reacciones han impedido que el Sol implosionara, por la gravedad, y se volviera más pequeño y demasiado caliente, deteniendo su contracción. Por otra parte, la gravedad lo mantiene todo y proporciona las temperaturas y presiones necesarias. Realmente, sin la gravedad todo lo que tendríamos sería un gas frío y difuso, en lugar del Sol. La notable pequeñez de la entropía que necesitamos proviene de que se pueden ganar grandes cantidades de entropía mediante la contracción gravitatoria de gas difuso para formar estrellas. Estamos viviendo de esta reserva de baja entropía y seguiremos haciéndolo durante mucho tiempo, pero la fuente última, en realidad, la encontramos más atrás, en el propio estado de baja entropía en que comenzó nuestro Universo.

A diferencia de lo que pasaría si nuestro Universo implosionara en un Big Crunch (Gran Colapso o Gran Implosión), que sería un estado de impresionante desorden y gran entropía, esa misma concentración de energía cuando se produjo el Big Bang presentaba un absoluto orden, un estado de muy baja entropía. En cierta forma, todo nuestro orden actual y futuro, la organización que presentan nuestros organismos vivos se debe al estado inicial de muy baja entropía.


La nueva mente del emperador. Roger Penrose. Grijalbo Mondadori.S.A Barcelona 1995.