2014/12/30

La sorprendente energía del vacío



Geometría determinada por la energía del vacío

Las fluctuaciones de energía del vacío determinan la propia geometría del espacio. No son simples variaciones sobre un fondo fijo y estable, por lo que analizando su estructura podremos averiguar algo más sobre la referencia espaciotemporal que determinan. Por una parte son no diferenciables, hasta el punto de que son la causa directa de la desaparición del concepto clásico de trayectoria continua en el vacío. Por otra parte su estructura es auto semejante a cualquier escala:
Si tomamos cualquier distancia mayor que la distancia de Planck, por pequeña que sea (diámetro atómico, por ejemplo) y cualquier otra distancia de orden cósmico (diámetro de un cúmulo estelar), a una distancia doble le
corresponderá una energía del vacío mitad, y a una distancia mitad una energía del vacío doble (inverso de la distancia).
En base a estas simples propiedades consideraremos una hipótesis de trabajo:
que la estructura asociada a la energía del vacío de las fluctuaciones cuánticas es fractal  y trataremos de estudiar sus características.

Dimensión fractal

La característica más especial de los fractales es su dimensión. Siempre es positiva y superior a su dimensión topológica. En cierta manera, de forma intuitiva nos indica la dimensión del espacio que son capaces de ocupar. Una cuartilla es un ejemplo de objeto de dimensión topológica 2, pero si la arrugamos conseguimos que ocupe un espacio de mayor dimensión, entre 2 y 3 (normalmente fraccionario). Lo mismo ocurre con una línea (dimensión 1) que si la hacemos lo suficientemente intrincada e irregular es capaz de ocupar un plano (dimensión 2) e incluso un espacio (dimensión 3). Si la línea llega a ocupar el plano su dimensión fractal será 2 y si ocupa el espacio tridimensional, su dimensión fractal será 3. Conforme mayor sea su dimensión fractal, más intrincado e irregular será el fractal: a su dimensión topológica se le suma un coeficiente dimensional que completa el valor de su dimensión. Este coeficiente, normalmente fraccionario, nos indica el grado de irregularidad del fractal.

Dependencia espacial en los fractales   


La líneas fractales gozan de una característica notable con relación a su dependencia espacial: una línea fractal capaz de recubrir el plano, para alejarse de cualquier punto arbitrario una distancia efectiva L debe recorrer una distancia media L2. A otra línea fractal capaz de llenar el espacio le ocurre algo similar: para alejarse de cualquier punto arbitrario una distancia efectiva L, deberá recorrer, como media, una distancia total L3. Es decir, el valor de los exponentes 2 y 3 se corresponde con las dimensiones fractales de las líneas.
Sabiendo la dimensión del fractal podemos calcular su dependencia espacial y a la inversa. Lo que ocurre con las curvas fractales (dimensión topológica 1) lo podemos generalizar a cualquier estructura fractal continua (e isótropa) con mayor dimensión topológica, dividiendo su dimensión fractal por su dimensión topológica.
Reducimos así la dispersión de resultados y encontramos más fácilmente símiles con ejemplos sencillos como trayectorias unidimensionales. A este cociente le llamaremos dimensión fractal relativa:

Dim. frac. relativa = (dimens. topológica + coef. dimensional )/(dimens. topológica).

En nuestro caso conocemos que la energía asociada al vacío depende inversamente de la distancia (L-1). Si fuera una simple línea (dimensión 1) encontraríamos que su dimensión fractal sería -1, pero como la energía es una magnitud tridimensional su dimensión fractal será -3, lo que obedece a un coeficiente dimensional negativo e igual a -6.

Tanto la dimensión fractal como el coeficiente dimensional negativos son resultados anómalos que obedecen a una causa sorprendente que estudiaremos a continuación. Siempre en base a la hipótesis fractal de las fluctuaciones que hemos planteado.


2014/11/30

Camera obscura

Termino latino que significa “habitación oscura” y se refiere a la técnica que ofrece la posibilidad de hacer fotografías mediante los rayos de luz, sin lentes. Consiste en una sala cerrada cuya única fuente de luz es un pequeño orificio practicado en uno de los muros, por donde entran los rayos luminosos reflejando los objetos del exterior en una de sus paredes. El orificio funciona como una lente convergente y proyecta, en la pared opuesta, la imagen del exterior invertida tanto vertical como horizontalmente (Página web del fotógrafo Ilan Wolf).

La técnica era conocida ya por Aristóteles y Euclides, que habían observado el fenómeno que ocurría de forma natural al pasar la luz del Sol a través de una cesta o de entretejidos de hojas. Pero los antiguos griegos creían que nuestros ojos emitían rayos que nos permitían ver, y fue Alhazen (Ibn al-Haytham), matemático, astrónomo y físico iraquí del siglo X el que, en su tratado “Libro de óptica”, demostró que la luz entraba al ojo en lugar de salir de él. También inventó la primera cámara oscura después de notar cómo salía la luz de un agujero en las persianas. Mejoró la cámara al notar que cuanto más pequeño era el agujero más nítida era la imagen. Me recuerda lo que ocurría en mi cuarto los domingos por la mañana, cuando de niño me podía levantar más tarde de la cama. A través de unas rendijas de la ventana veía proyectarse, con bastante nitidez, el paso de las personas por la calle. Me interesé por el fenómeno y construí mi primera cámara oscura con una caja de cartón. La magia de lo sencillo y auténtico.


 Cámaras oscuras por todo el mundo :Al documentarme sobre la cámara oscura, me asombré al descubrir que en el siglo XIX proliferó la construcción o habilitación de edificaciones, que se comportaban como cámaras oscuras, como atracción lúdica e instructiva. En la actualidad existen en todo el mundo, desde Edimburgo o Cádiz, hasta La Habana o San Francisco .

La cámara oscura, también recibe el nombre de cámara estenopeica del griego steno estrecho y ope abertura, agujero. El artículo de la Wikipedia es muy interesante e instructivo porque se ven de forma muy clara las características de abertura, el tiempo de exposición y distancia focal. A partir de un instrumento tan sencillo se desarrollaron desde las más antiguas máquinas fotográficas hasta las modernas cámaras electrónicas. Curiosamente, en esta época que tanto se valora la tecnología, existe toda una nueva corriente en la fotografía artística que valora la autenticidad de la cámara oscura. Fotógrafos como Ilan Wolf y Gabriel Lacomba lideran un movimiento de vuelta a los orígenes
 que se vale de cualquier objeto cotidianopara construir una cámara estenopeica. Incluso existe un día mundial de la fotografía estenopeica que se celebra desde hace unos años, y reuniones periódicas de aficionados.
El viejo principio de la camera obscura (pinhole camera, en inglés) usado en una investigación puntera del Cosmos :La NASA ha iniciado la investigación del proyecto New Worlds Imager , que utilizará una cámara estenopeica con un diámetro de diez metros y una longitud focal de 200.000 km para buscar planetas del tamaño de la Tierra en otros sistemas solares. La figura es una recreación artística de la cámara: de abajo a arriba encontramos la nave colectora, la sombrilla estelar con la apertura y el sistema planetario en estudio con su estrella. Abajo a la izquierda la Tierra. Crédito de la imagen: Dr. W. Cash et al.
Eclipse de 2005 a través de las hojas de los árboles :Los árboles me han permitido ver el mejor espectáculo que podía darnos el eclipse de sol.

Su sombra brindaba, sin el menor peligro para la vista  , cientos de fotografías actualizadas al segundo del eclipse solar que se estaba produciendo.

Formaban cientos de cámaras oscuras naturales que permitían seguir el particular baile de los dos astros. (4/oct.2005: El País )
Documentación complementaria:
Historia de la cámara oscura (Torre Tavira, Cádiz)
Experiencias estenopeicas , Gabriel Lacomba
Proyecto New Worlds Imager , por la Universidad de Colorado.

Post (01/05/13) de mi colaboración con Libro de notas.

2014/10/12

La muerte del Universo

La entropía es un concepto sumamente interesante, y en cierta forma enigmático, ligado al grado de desorden de la materia y la energía de un sistema. El segundo principio de la termodinámica establece que en un sistema cerrado, tal como el propio Universo, sus parámetros característicos se desarrollarán de tal forma que tenderán a maximizarla, es decir, a llevar al sistema a un máximo desorden. Dado que la forma más degradada de energía es la energía térmica, en cualquier sistema cerrado, toda la energía tenderá a acabar de esa manera: en un estado de total equilibrio termodinámico y a una temperatura cercana al cero absoluto, que impedirán cualquier posibilidad de extracción de energía útil. Es la llamada “muerte térmica”, el estado de mayor desorden posible o de máxima entropía.
Nuestro Universo como sistema cerrado está sujeto a ese destino de forma irremediable. La entropía esta aumentando incesantemente en las estrellas tanto como en nuestro planeta. Esto significa que, con el tiempo, las estrellas agotarán su combustible nuclear y morirán, convirtiéndose en masas muertas de materia nuclear. El universo se oscurecerá a medida que las estrellas, una a una, dejen de centellear. Todas las estrellas se convertirán en agujeros negros, estrellas de neutrones o estrellas enanas frías, dependiendo de su masa.
Posteriormente, según las Teorías de Gran Unificación,toda la materia tal como la conocemos, nuestros cuerpos, la Tierra o el sistema solar se desintegrará en partículas más pequeñas tales como electrones y neutrinos.
Después de un periodo, prácticamente inimaginable en nuestra escala temporal, la temperatura del universo se acercará al cero absoluto, pero incluso en un universo desolado y frío, a temperaturas próximas al cero absoluto, existe una última fuente remanente de energía: los agujeros negros. Según Hawking, no son completamente negros, dejan escapar energía lentamente al exterior.Pero ¿y después, cuando los agujeros negros en evaporación hayan agotado la mayor parte de su energía?.
Para un universo según la física clásica la muerte es irremediable, pero para un universo mecanocuántico sujeto a escalas temporales tan formidables no se puede descartar ningún tipo de raro suceso cuántico-cósmico, capaz de trastocar el más triste de los destinos.
El Universo nació con el mínimo de entropía y el máximo orden. En cierta forma partía como un reloj con la máxima cuerda. Conforme avanzamos en el tiempo la cuerda se va acabando y va apareciendo más y más desorden hasta la muerte térmica. Como ejemplo nos valdría imaginar un enorme tubo lleno de monedas perfectamente ordenadas, una encima de otra. Así sería el nacimiento del Universo. Las dejamos caer sobre una gran mesa de forma que todavía tengamos bastantes montoncitos ordenados, por ejemplo, con la cara de las monedas hacia arriba, y la mayoría del resto de las monedas sueltas también con la cara conservando la misma orientación. Esa situación podría asemejarse al estado del Universo actual. Finalmente, si imaginamos el final, estarían todas las monedas sueltas sobre la mesa, sin formar ningún montón y con la orientación de la cara/cruz totalmente aleatoria: un completo desorden.
La probabilística mecánica cuántica no descarta que después de miles de millones, de millones… y millones de años, dando una “palmada a la mesa”, vuelvan a ordenarse nuevamente las monedas de forma “milagrosa”. Es lo que tiene la mecánica cuántica. Parafraseando a Humphrey Bogart, en Casablanca, podríamos decir que “siempre nos quedará la mecánica cuántica”.

Post de mi antigua columna "Ciencias y letras", en Libro de notas.

2014/09/21

Libertad cuántica

Hola amigos, en un tiempo en que una serie de pueblos, tradicionalmente oprimidos, tratan de despojarse de viejos sistemas autocráticos y despertar a la libertad, las partículas más elementales que forman toda la materia de nuestro universo nos dan una lección de su caracter indomable. La libertad, en cierta forma, está impresa más allá de nuestros genes en la esencia de la propia materia. Paso a reeditaros un antiguo post que habla de la "libertad cuántica". Un abrazo.



Las partículas elementales parecen poseer una cierta "libertad cuántica". Para ellas los sucesos no están estrictamente determinados, como lo fueron para las partículas en la física clásica del siglo XIX, y poseen un elemento de elección dentro de ciertos límites, siempre que en promedio obedecezcan las leyes clásicas. El cuanto de acción, h, les da esa libertad.

Tratemos de confinar un electrón dentro de un núcleo atómico. Después de todo ¿por qué no deben los electrones ser un componente de los núcleos como los protones y los neutrones? Los neutrones experimentan una desintegración radiactiva que los convierte en un protón y un electrón (radiación beta). Por tanto, un electrón atrapado por un protón para formar un neutrón parecería una idea razonable, pero el electrón rehúsa cooperar, se niega a ser confinado.

Un electrón confinado a un espacio de dimensiones nucleares debe tener longitudes de onda asociadas a él tan cortas, al menos, como el diámetro del núcleo. Si las ondas fueran mayores significaría que el electrón consume la mayor parte de su tiempo fuera del núcleo, y eso no funcionaría. Sin embargo, las longitudes de onda cortas implican una restricción en espacio, y ello debe estar equilibrado por un incremento del momento con objeto de conservar su cuanto de acción fundamental, h ( (incremento de espacio) x (incremento de momento) = cuanto de acción (h)) . El electrón tendría tanta energía cinética que saldría de su jaula nuclear. El encarcelamiento no puede realizarse. Los electrones no pueden existir dentro del núcleo en un estado estable, a menos que se ejerza una tremenda fuerza para vencer su empuje hacia la libertad.

Sólo una fuerza tan inmensa como la presión de una estrella que se desintegra bajo su propia gravedad puede apiñar electrones en núcleos para formar un cuerpo compuesto completamente por neutrones: la estrella de neutrones. Y ello es una medida gráfica de lo fuerte que es la urgencia de libertad del electrón. Necesita que un cuerpo del tamaño de una estrella se siente sobre él.

Cada vez que tratamos de restringir la libertad cuántica de un electrón, ya sea forzándolo a entrar en algún espacio o dirigiéndolo a través de hendiduras, éste insiste en su libertad de acción y la manifiesta de una forma característica, y no sólo de forma pasiva. Puede promover su libertad violando las leyes ( clásicas) de la conservación de la energía y el momento.


Del estupendo librito " Tiempo, espacio y cosas", de B.K. Ridley, título original "Time, space and things", publicado por Cambridge University Press. Traducción de 1989 del Fondo de Cultura Económica. Pura belleza al servicio de la divulgación científica.

Reciente teoría:

Puede que el comportamiento de las partículas cuánticas no sea tan extraño. Según una reciente teoría que conjuga nuestro conocimiento sobre fractales y agujeros negros, las partículas podrían ser comparadas con una serie de trenes moviéndose sobre una intrincada red fractal de vías. La aparente libertad que observamos en su movimiento se ciñe a ese entramado de vías que desconocemos. No podemos forzar cualquier movimiento arbitrario que permita que el “tren se salga de la vía”.
Ese entramado de vías se correspondería con el llamado conjunto invariante del universo, un mínimo de información subyacente que engloba el número total de estados posibles en el mismo. La supuesta libertad del electrón se ceñiría a seguir ese conjunto mínimo de información que determina, aunque no lo veamos, sus movimientos. (Ciencia Kanija).

2014/08/04

Leyes del caos, vida e inteligencia


La ciencia del caos, curiosamente, ha hecho una aportación trascendental para mejorar nuestra comprensión del mundo. Hasta ahora se creía que la vida y con ella la inteligencia eran puras casualidades pero ahora sabemos que la materia, ciega en el equilibrio, manifiesta potencialidades imposibles en otras condiciones alejadas del mismo siempre que haya la necesaria aportación de energía. Con las leyes que rigen nuestro no hubo más que esperar el tiempo necesario para que las estrellas crearan los átomos imprescindibles para la vida y ésta progresara, a través de organismos cada vez más sofisticados y adaptados al ambiente de forma más eficiente, permitiendo que apareciese la inteligencia en especies evolucionadas como la nuestra.


Si la vida y la inteligencia vienen impresas en las propias leyes que nos rigen la posibilidad de vida e inteligencia extraterrestres están aseguradas.Ilya Prigogine, recibió el premio Nobel de Química en el año 1977 por su aporte al conocimiento de las "estructuras disipativas" en el mundo físico, es decir, el estudio de la aparición del orden en condiciones alejadas del equilibrio. El término estructura disipativa busca representar la asociación de las ideas de orden y disipación. El nuevo hecho fundamental es que la disipación de energía y de materia, que suele asociarse a la noción de pérdida y evolución hacia el desorden, se convierte, lejos del equilibrio, en fuente de orden. Estas estructuras están en la base de la vida y en ellas el orden se establece en base a ecuaciones de evolución no lineal, de mucha mayor complejidad que cerca del equilibrio en donde las soluciones son mucho más simples y se pueden linealizar.

Potencialidad:
Lejos del equilibrio existen muchas soluciones, potencialidades que no existen cerca del equilibrio. Esta riqueza nos puede guiar mucho mejor para comprender fenómenos complejos como la historia del clima, de la Tierra y de la propia vida. Todo esto está ligado a una estructura de no equilibrio que era incomprensible desde una perspectiva antigua: el no equilibrio no es sólo degradación, sino también construcción. Ni el tiempo repetitivo de la mecánica ni el tiempo-degradación de la termodinámica clásica pueden explicar la riqueza del mundo tal como lo vemos. La naturaleza inventa. Nada es reversible. Y su dimensión temporal dista de agotarse en la concepción matemática de un tiempo absoluto, como la concepción abstracta de la mecánica clásica. En los sistemas sencillos no caóticos su atractor, una especie de representación de sus variables dinámicas, es una figura geométrica simple o un punto, mientras que en los caóticos son figuras de una complejidad extraordinaria llamados atractores extraños. De esa complejidad se pueden extraer infinitas posibilidades para la evolución futura del sistema.


Los mecanismos de organización en las estructuras disipativas sólo pueden aparecer cuando el medio externo mantiene, mediante la aportación energética, el sistema alejado del equilibrio. La estructura es creada y mantenida gracias al intercambio de energía con el exterior. Por eso las llamamos estructuras disipativas. En ciertas condiciones críticas externas, las ínfimas fluctuaciones naturales y constantes de un sistema pueden, en vez de atenuarse, amplificarse y arrastrar el sistema en una u otra dirección. La rama de la bifurcación que escogerá el sistema es imprevisible, pues el fenómeno es aleatorio y parece fruto del azar.

La segunda ley, orden y desorden:
En un sistema aislado, la segunda ley de la termodinámica nos enseña que el desorden, la entropía, aumenta irremediablemente, pero eso no impide que una parte de ese sistema con una aportación de energía y materia de su entorno aumente su orden y disminuya su entropía. La suma total de entropía sigue aumentando, pero esa parte del sistema se organiza a costa de aumentar el desorden a su alrededor. Esa es la historia esencial de los organismos vivos. Cuando las condiciones externas cambian y se vuelven extremas el organismo entra en crisis y aparecen fenómenos aleatorios de bifurcación que le dan opciones de supervivencia. El sistema elige una de las opciones que se adaptará mejor o peor a las nuevas condiciones. Si elige bien vuelve a encontrar un periodo de estabilidad regido por el orden, si vuelve a entrar en crisis volverá el desorden y la nueva elección.

Hasta Prigogine, la ciencia pensaba que la vida era una especie de casualidad, un raro fenómeno difícil de reproducir, pero con Prigogine hemos aprendido que la materia lejos del equilibrio manifiesta potencialidades imposibles en otras condiciones. La intuición de que era posible elaborar una termodinámica general de sistemas vivos o abiertos y de sistemas cerrados, aislados e inertes, le valio a Ilya Prigogine el Premio Nobel de Química.

Algo más sobre el caos:


Historia, dignidad y efecto mariposa.

Efecto mariposa, un atráctor extraño.


Reedición del post de fecha 17/12/2010. ¡¡¡Feliz verano amigos!!!

2014/06/20

Los tres primeros minutos del universo


Este es el título de un clásico de la divulgación científica. El Premio Nobel de Física de 1979 y profesor de la Universidad de Harvard Steven Weinberg nos explica en unos cuantos "fotogramas" la evolución de los tres primeros minutos del universo, previa introducción sobre la expansión del universo y sobre el fondo de radiación. Sus conocimientos sobre el microcosmos, sobre las partículas más pequeñas que forman la materia, nos abren las puertas a un espectáculo grandioso y único. Admite que no se puede empezar la "película" en el tiempo cero y con temperatura infinita, pero las cosas parecen bastante claras ya en el:

Primer fotograma: Cuando apenas ha transcurrido una centésima de segundo y la temperatura se ha enfriado hasta unos cien mil millones de grados Kelvin o absolutos ( el cero está sobre los -273 ºC), el universo está lleno de una sopa indiferenciada de materia y radiación, en estado de casi perfecto equilibrio térmico. Las partículas que más abundan son el electrón y su antipartícula, el positrón, fotones, neutrinos y antineutrinos. El universo es tan denso que incluso los huidizos neutrinos, que apenas interactúan con la materia, se mantienen en equilibrio térmico con el resto de la materia y radiación debido a sus rápidas colisiones. La densidad de la masa-energía en ese momento es del orden de 3,8 mil millones de veces la densidad del agua en condiciones terrestres normales. El tiempo característico de expansión del universo es de 0,02 segundos y el número de partículas nucleares (protones y neutrones) es del orden de un nucleón por 1000 millones de fotones, electrones o neutrinos. Las reacciones más importantes son: (a)Un antineutrino más un protón dan un positrón más un neutrón y viceversa.(b) Un neutrino más un neutrón dan un electrón más un protón y a la inversa.

Segundo fotograma: La temperatura ahora es de 30.000 millones de grados Kelvin y desde el primer fotograma han pasado 0,11 segundos. Nada ha cambiado cualitativamente, aunque la densidad de la energía ha disminuido con la cuarta potencia de la temperatura y el ritmo de expansión ha disminuido con su cuadrado. El tiempo característico de expansión es ahora de 0,2 segundos y las partículas nucleares todavía no se hallan ligadas a núcleos, aunque con la caída de la temperatura es ahora más fácil que los neutrones, más pesados, se conviertan en protones que al revés. Su balance es del 38% de neutrones por el 62% de protones.

Tercer fotograma: La temperatura del universo es de 10.000 millones de grados Kelvin. desde el primer fotograma han pasado 1,09 segundos y la densidad y la temperatura han aumentado el tiempo libre medio de los neutrinos y antineutrinos que empiezan a desacoplarse de la radiación, electrones y positrones y a comportarse como partículas libres. La densidad total de la energía es menor que en el fotograma anterior en la cuarta potencia de la razón de las temperaturas, por lo que viene a ser unas 380.000 veces mayor que la del agua. El tiempo característico de expansión es ahora de unos 2 segundos y los positrones y electrones comienzan a aniquilarse con mayor rapidez de la que pueden ser recreados a partir de la radiación. Todavía no se pueden formar núcleos estables, y la proporción neutrón-protón es ahora 24-76 %.

Cuarto fotograma: La temperatura es ahora de 3.000 millones de grados Kelvin, han pasado 13,82 segundos del primer fotograma y los electrones y positrones empiezan a desaparecer como componentes destacados del universo. El universo está lo bastante frío para que se formen diversos núcleos estables, como el helio común formado por dos protones y dos neutrones (He4). Los neutrones aún se convierten en protones, aunque más lentamente. La proporción de nucleones es ahora del 17% de nuetrones y del 83% de protones.

Quinto fotograma: La temperatura es de 1.000 millones de grados, sólo 70 veces más caliente que el Sol.Desde la primera imagen han pasado tres minutos y dos segundos. Los electrones y positrones han desaparecido, en su mayor parte, y los principales componentes del universo son ahora fotones, neutrinos y antineutrinos. Ahora el universo está lo suficientemente frío para que se mantengan unidos los núcleos del tritio y helio tres, así como los del helio ordinario, pero no se pueden formar, todavía, cantidades apreciables de núcleos más pesados. El balance neutrón-protón es ahora del 14-86 %.

Un poco más tarde: A los tres minutos y cuarenta y seis segundos del primer fotograma, la temperatura es de 900 millones de grados Kelvin y comienza la nucleosíntesis, la proporción en peso de helio es ya el doble de la proporción de neutrones entre las partículas nucleares, es decir del orden del 26%. A los 34 minutos y cuarenta segundos del primer fotograma (300 millones de grados) los procesos nucleares se han detenido y las partículas nucleares están ahora en su mayoría ligadas a núcleos de helio o son protones libres. hay un electrón por cada protón libre o ligado, pero la temperatura es todavía alta para que formen átomos estables.

Durante 700.000 años más el universo seguirá expandiendose y enfriándose, pero no ocurrirá nada de interés.Después podrán formarse núcleos y átomos estables y la falta de electrones libres hará que el contenido del universo sea transparente a la radiación. El desacoplamento de la materia y la radiación permitirá a la materia comenzar a crear galaxias y estrellas."Después de otros 10.000 millones de años, aproximadamente, los seres vivos comenzarán a reconstruir esta historia".
El primer fotograma podría resumirse como:" Al principio fue la luz". La radiación (luz) y la materia en equilibrio térmico y estado indiferenciado. Es la impresión más fuerte que guardo de cuando leí el libro la primera vez.

Libro:
"Los tres primeros minutos del universo". Steven Weinberg. Madrid 1980. Alianza Universidad. 
Nota: La segunda figura es el mapa de las anisotropías del fondo de radiación cósmica.

Reedición de uno de mis post clásicos. ¡Feliz verano amigos!

2014/05/31

Lisofractales, "lisos" por fuera y rugosos por dentro (1)


Imaginemos una línea fractal tan irregular e intrincada que fuera capaz de llenar el propio espacio tridimensional. Esta línea tendría una dimensión fractal de valor 3, porque es capaz de recubrir un espacio de dimensión 3 mientras su dimensión topológica es de sólo 1. Dado que la dimensión fractal es igual a la dimensión topológica más un coeficiente dimensional, en este caso dicho coeficiente sería nada menos que 2. En los fractales más “lisos” y regulares la dimensión fractal es mayor que su dimensión topológica (como ocurre con todo fractal) pero la diferencia entre ambas debe ser mucho menor que el 10% ¡ En el caso de la línea fractal que nos ocupa es del 200 %!

Recreación Fractal  Artística 1: Navegando con Ulises Blogspot.com

Las líneas fractales continuas tienen una dependencia muy determinada con la distancia. En el caso de la línea fractal de dimensión 3 la distancia que la aleja de cualquier punto arbitrario es del orden de la raíz cúbica del espacio total recorrido desde que pasó por dicho punto. En el movimiento browniano que tiene dimensión 2, la distancia efectiva a cualquier punto arbitrario es la raíz cuadrada  de la distancia total recorrida. En general la distancia total recorrida es la distancia efectiva elevada a la potencia d, siendo ésta la dimensión fractal de la línea.


Esta dependencia de las líneas fractales con la distancia se puede extender a superficies o a espacios con dimensión topológica mayor de una forma sencilla, siempre que las propiedades del fractal sean lo más isótropas posibles. Para ello dividimos la dimensión fractal del objeto a estudiar por su dimensión topológica y al resultado lo llamaremos dimensión fractal relativa. En cierta forma convertimos al fractal estudiado en una línea fractal, aunque lógicamente la trasformación no conserva las propiedades direccionales o anisótropas del fractal original.

Recreación Fractal Artística 2: Luisamr.blogspot.com

Los fractales que he llamado lisofractales exhiben sus curiosas propiedades en espacios en donde algunas de sus dimensiones son despreciables respecto a las otras. Puede haber recintos espaciales de N dimensiones en donde algunas de esas dimensiones queden reducidas a su mínima expresión: de hecho, entonces, el número de dimensiones significativas será un número N1 menor que N.


Vamos a ver un sencillo cálculo sobre todo esto: Imaginemos un fractal con dimensión topológica y con un coeficiente dimensional e . Su dimensión fractal será:  d + e. Y su dimensión fractal relativa será:  (d + e)/d (Expresión A).
Ahora supongamos que restamos al número de dimensiones topológicas un valor igual a e de forma que d se convierte en d - e (nuevo valor de las dimensiones significativas). Entonces, el nuevo valor de la dimensión fractal relativa será ( sustituyendo d por d-e):
Nuevo valor de la dimensión fractal relativa = d /(d-e) Expresión B).     
Hay una diferencia significativa entre la (Expresión A) y la (Expresión B), la primera sólo puede ser positiva pero la segunda puede ser, también, negativa. De hecho nos interesa  la posibilidad de que su valor sea (-1). En ese caso: d /(d-e)= -1. Que se cumple para
el valor de las nuevas dimensiones significativas d igual a e/2

Esquema explicativo sobre Lisofractales: los puntos representan la magnitud del escalar que determina el fractal el fractal.
En los lisofractales la magnitud del escalar que determina el fractal depende de la distancia elevada a (-1), es decir dicha magnitud es muy considerable en las pequeñas distancias e insignificante en las distancias mayores: "Liso por fuera (a lo lejos) y rugoso por dentro (de cerca)". Hay que destacar que considerando la (Expresión A), es decir sin restar ninguna dimensión topológica, la dependencia del fractal con la distancia dependería de la distancia elevada a 3, que es el valor de la expresión para d igual a e/2


Se puede generalizar para diferentes valores de la (Expresión B), no sólo (-1) que es el caso estudiado. Para valores más negativos: (-2), (-3), (-4),….., etc, el lisofractal se alisa muchísimo más en las grandes distancias, dado que estamos hablando de números que son exponentes negativos de la distancia, sin embargo el valor de la (Expresión A)  sólo va pasando muy lentamente de 3, para (Expresión B= -1), hasta 2, para (Expresión B= - infinito).



Los lisofractales nos indican que un medio fractal, muy irregular e intrincado a ciertas distancias, puede ser observado a otras distancias mayores como un medio completamente diferente y con apariencia regular y liso. Pero no estamos hablando de observarlo a distancia desde un punto exterior a él, sino desde su interior. Las observaciones sobre su irregularidad, en su interior, para una distancia d son completamente diferentes para otra distancia  n veces d. Lo podemos observar más claramente en el dibujo esquemático de arriba.


Para terminar, y de forma ilustrativa, añadiré que el VACÍO CUÁNTICO  exhibe las propiedades de un LISOFRACTAL,desde un punto de vista puramente geométrico.


Nota (1): La palabra "liso" proviene de la raíz griega liz (lis): “que no presenta asperezas ni rugosidad”. La palabra "fractal" viene del latín fractus, que significa quebrado o fracturado.

2014/05/20

Notas varias, collage claroscuro tirando al negro

Algunas notas, casi al azar, sobre gravitación cuántica y agujeros negros

Sobre espacio-tiempo y paradigma holográfico:
Conforme avanza nuestro conocimiento sobre el universo aparecen más interrogantes, vuelven las eternas preguntas que se han hecho los filósofos de todos los tiempos, aunque la perspectiva ha cambiado sustancialmente. Los principios básicos que vislumbramos sobre la gravedad cuántica nos indican que el propio espacio-tiempo no es el fundamental, eterno e inmóvil referente que siempre hemos creído sino que emerge de una entidad fundamental discreta (no continua) y su propia geometría debe estar inextricablemente ligada a las relaciones causales entre sucesos.
Leer más...

.............................
Extraña luz de agujero negro:
Un agujero negro del que no salga nada (el caso clásico), ni presente al exterior ninguna manifestación cuando engulle materia con mucha entropía, sugiere una forma demasiado fácil de disminuir la entropía de la materia exterior al mismo. Conforme arrojáramos al agujero materia con gran entropía haríamos disminuir la entropía exterior. Serían agujeros por los que se “escaparía” el cumplimiento de la segunda ley de la termodinámica, la tendencia natural al aumento de entropía o desorden (ver nota final sobre la entropía). Desde el Bing Bang, una explosión en perfecto orden , la entropía total del Universo no ha dejado de crecer y así será hasta la llamada muerte térmica .

La extraña luz de los agujeros negros, bautizada como radiación de Hawking que fue quien la descubrió, devuelve desorden, entropía, a nuestro Universo que sigue degradándose sin remedio hasta su muerte final (la energía de la radiación calorífica es la energía más degradada). Sin esa tenue luz los agujeros negros engullirían, además de materia, desorden. El determinismo clásico los hace más negros pero menos reales… la realidad, por una vez, no es tan “negra” como la pintan.

Leer más...
..................

Dragones alados y agujeros negros:
Agujeros negros, agujeros de gusano, túneles en el espacio-tiempo, viajes en el tiempo, distorsión espacial y temporal, todos estos conceptos que parecen sacados de una novela de ciencia ficción, forman parte ya de la ciencia seria que se investiga en la actualidad, y no deja de ser una paradoja que la física, la ciencia más pura y dura, se ocupe de cuestiones, en otro tiempo, esotéricas. La materia a la que nos agarramos como lo más sólido, simple y real que tenemos se está convirtiendo, cada vez más, en algo lleno de misterio y complejidad. La física cuántica y la teoría de la relatividad general nos la presentan como algo siempre en movimiento que se confunde con el propio espacio y tiempo. Conforme tratamos de entender sus propias entrañas se nos aparece como formando una especie de entidad compleja que algún premio Nóbel no ha dudado en llamar: la materia-espacio-tiempo. Las extrañas criaturas que son los agujeros negros, con la curiosidad que han despertado entre los físicos, a comprender mejor el mundo que nos rodea. En cierta forma su negra belleza ha arrojado un rayo de luz sobre nuestro conocimiento del universo que nos cobija.



Leer más ...
......................

Antes del Big Bang, la espuma cuántica:

La mecánica cuántica nos prepara en cierta forma la mente para imaginar la creación del Universo a partir de una nada cuajada de fluctuaciones cuánticas pre-espaciotemporales. Ya en el Universo actual nos enseña que el vacío es un verdadero hervidero de creación y aniquilación de partículas virtuales que, a distancias del orden de Planck, se convierte en la llamada "espuma" cuántica del espacio-tiempo. En ella nada de lo que conocemos y nos es familiar cuenta pues entramos en los dominios de la desconocida, hasta ahora, gravedad cuántica.
Leer más ...

...................

Radiación de Hawking:
Conforme más sabemos de estas exóticas criaturas estelares, más nos sorprenden. Hemos descubierto que emiten radiación (llamada de Hawking) y no son tan negros como nos los pintaban; que el área de su horizonte de sucesos nos mide toda su entropía y nos delata la magnitud del desorden exterior que ha devorado, y que mueren en medio de un estallido de energía brutal. Parecía que nos lo querían esconder todo, y, sin embargo, nos cuentan cosas que sin ellos nunca habríamos sabido sobre el propio nacimiento del Universo y de su final, pues sus propiedades llevan años alumbrando la dirección que debemos tomar para descubrir la futura teoría de la gravedad cuántica: la llave del pasado y del futuro del Universo.

Leer más ...
................


Gravitación cuántica, distancia fundamental y teoría de cuerdas:
Una propiedad matemática tan elemental como es la no conmutatividad está en la base de lo que será la futura teoría de gravitación cuántica. Los retículos espaciales que sustituyen a las coordenadas no conmutan, es decir si X es el operador cuántico de la coordenada x e Y es el operador de la y, el producto XY es diferente al producto YX. Las coordenadas clásicas son simples números reales que por descontado son conmutables, pues da lo mismo multiplicar las coordenadas xy en ese orden o en el contrario yx. Esta diferencia tan abismal nos da una idea de la nueva complejidad necesaria para poder describir correctamente la realidad del espaciotiempo.

Leer más ...


Un abrazo amigos.

2014/03/17

Polvo fractal con dimensión entera (reedición de un post clásico)


Como comentaba en el post sobre el “Vacío cuántico, vacío fractal ”,  la existencia del cuanto de acción ha destruido por completo la propia noción de trayectoria clásica.

Laurent Nóttale complementó la definición de Richard Feynman (1965) y A. Hibbs sobre las trayectorias virtuales típicas de una partícula cuántica, indicando que los caminos cuánticos posibles son, en número infinitos, y todos son curvas fractales caracterizadas por una propiedad geométrica común: su dimensión fractal es 2.

En algunos foros he leído que no se entendía bien lo de la dimensión fractal entera, en este caso 2, pero tal como indicaba en la expresión general de la dimensión fractal:

   Dimensión fractal dimensión topológica + factor dimensional

( El factor dimensional, siempre positivo, es tanto mayor cuanto más irregular es el fractal: indica la capacidad de ocupar más espacio del que indica su propia dimensión topológica)

Si el factor dimensional es entero, también lo será la dimensión fractal. Eso es lo que ocurre con las trayectorias virtuales en mecánica cuántica y también en una serie de fractales típicos, como puede ser el fractal del movimiento browniano en un plano (dimensión fractal 2)  o la curva de Peano (dimensión fractal 2) que tiene más de 100 años de existencia.


Si una curva clásica tiene dimensión topológica 1, cuando hablamos de curvas fractales con una dimensión  entre 1 y 2 estamos indicando que son capaces de ocupar parte del plano. Y es precisamente esa capacidad la que viene expresada por el factor dimensional.  En el caso de la curva de Peano o del movimiento browniano, en el límite, ocupan todo el plano, de ahí que su dimensión fractal sea 2 , la propia dimensión del plano.



Como ejemplo, todavía más llamativo, observamos en la figura un fractal clásico
 (el primero que se conoce), el polvo de Cantor que toma toma su nombre de Georg  Cantor  que en 1883 lo utilizó como herramienta de investigación para una de sus principales preocupaciones: el continuo.





A partir de una recta se le van quitando los segmentos centrales hasta conseguir una serie infinita de puntos aislados, de ahí el nombre de polvo. Si restablecemos de forma escalonada  el segmento que antes le quitábamos, el nuevo fractal sigue  teniendo estructura quebrada y autosemejante , pero ahora en lugar de tener una dimensión fractal igual a log 2/ log 3 tiene una dimensión entera: log 3/ log 3 =1. Nos ayuda, también,  a entender como se calcula, de forma práctica, la dimensión fractal de una figura.



Esta otra figura es una síntesis de dos de los fractales clásicos, Koch  y  Cantor, y nos ayuda de forma intuitiva a entender el cálculo de su dimensión fractal. En la figura original de Koch, sobre los segmento A1-B1-D1-E1 se construye  la figura que forman los segmentosA-B-C-D-E. Su dimensión fractal es  log 4/ log 3  ( cuatro segmentos sobre tres). En la nueva construcción se ha sustraido 1/4 de cada uno de los segmentos superiores para dejar 4 segmentos de longitud 3/4: al final son 3 sobre 3 (log 3/ log 3 = 1).

Se pueden construir infinidad de fractales con dimensión entera y, precisamente, esa irregularidad que representa una dimensión fractal entera en un fractal creo que nos ayuda a entendelos mejor.

NOTA: Este post se publicó también en la revista Ciencia Abierta de la Universidad de Chile, en el número 31, sección de Educación, artículo nº 14 de dicha sección. Allí se añadió una parte más sobre la llamada dimensión de Hausdorff-Besicovitch:


En 1975 Benoit Mandelbrot publicó un ensayo titulado” Los objetos fractales: forma, azar y dimensión”. En la introducción comentaba los conceptos de objeto fractal y fractal como términos que había inventado a partir del adjetivo latino “fractus” ( roto, fracturado). Posteriormente, en 1982, publicó el libro “The Fractal Geometry of Nature”, en donde proponía : “Un fractal es, por definición, un conjunto cuya dimensión de Hausdorff-Besicovitch es estrictamente mayor que su dimensión topológica.”

De forma simplificada, esa dimensión tan rara se podría entender de la siguiente manera: Una línea recta de longitud N queda recubierta por un número N de segmentos de longitud unidad. Podemos expresarlo diciendo que longitud_línea = N(+1). Un cuadrado con lado N queda recubierto por N2 pequeños cuadrados de lado la unidad. De forma similar a la línea se puede expresar que superficie_cuadrado = (N)(+2). Sabemos que una línea recta tiene dimensión topológica 1 y una superficie dimensión 2. Para
recubrirlos necesitamos un elemento similar pero más pequeño ND veces (en estos ejemplos de magnitud unidad). En general, el exponente D , generalizado a cualquier objeto, representa la dimensión de Hausdorff-Besicovitch del objeto.

Han sido propuestas otras definiciones y, de hecho, estamos ante un concepto geométrico para el que aún no existe un una definición precisa, ni una teoría única y comúnmente aceptada.

Kenneth Falconer, en su obra titulada “Fractal Geometry: Mathematical Foundations and Applications”, en 1990, describe un concepto de estructura fractal ‘F’ como la que satisface alguna(s) de las propiedades siguientes:
(1).- “F” posee detalle a todas las escalas de observación;
(2).- No es posible describir “F” con Geometría Euclidiana, tanto local
como globalmente;
(3).- “F” posee alguna clase de autosemejanza, posiblemente estadística;
(4).- La dimensión fractal de “F” es mayor que su dimensión topológica;
(5).- El algoritmo que sirve para describir “F” es muy simple, y
posiblemente de carácter recursivo.

En resumen, una técnica análoga a la que los biólogos aplican al concepto de vida.

Cuando observamos un fractal, de hecho, apreciamos algo que nos es familiar, más cercano que las perfectas figuras geométricas clásicas que nos han enseñado en el colegio.

Las ramificaciones de los árboles, las roturas imperfectas de una montaña o una costa, la disposición de la máxima superficie en un mínimo espacio de nuestro tejido pulmonar...

Los fractales nos acercan a la compleja "simplicidad" de la Naturaleza.

2014/02/03

Agujeros negros/blancos y paradigma holográfico


Curiosidades sobre hologramas
Además de ser tridimensional, la imagen registrada en un holograma difiere
de una fotografía convencional en un sentido muy importante.Si se corta
una fotografía normal por la mitad, cada parte contendrá sólo la mitad de
la imagen contenida en la fotografía original. En cambio, si se corta un
holograma por la mitad y se proyecta un haz de láser a través de una de
las secciones, se comprobará que cada mitad contiene la imagen
completa del holograma original, con menor definición. Cada
diminuta parte del holograma contiene no sólo su propio "bit" de
información, sino también todo otro "bit" de información correspondiente
al resto de la imagen; en consecuencia, se puede cortar un holograma
en pedazos y cada porción individual contendrá una versión borrosa pero
completa de la imagen entera. Dicho de otro modo, en un holograma
cada parte de la imagen interpenetra todas las demás partes,
de la misma forma que en el universo no local todas sus partes se interpenetran.

Seguir leyendo.. (El universo como holograma multidimensional)



Agujero negro/agujero blancoEn una ocasión, meditando sobre
este fenómeno tan asombroso
pensé en lo que significan los
agujeros negros con relación al
resto del universo. En cierta
forma, pensé, si admitimos que el
universo es un inmenso holograma
(David Bohm), cada agujero negro supone una especie de "corte", o separación, en dicho holograma. En un sentido clásico esa separación no tendría trascendencia pero en el sentido holográfico ese pedazo de universo separado intentaría reproducir, de forma más borrosa, al universo entero:
Podría significar que se abre a un nuevo espacio-tiempo, en forma de agujero blanco, creando un nuevo universo con una constante
de Planck mayor que en el nuestro, porque supondría una menor
definición, un "grano fotográfico" mayor y un universo "más borroso",
con menor grado de información.



Constante de mínima acción y máxima información en una región del espacio
Continuando con este razonamiento y partiendo de la igualdad que liga tres
constantes universales para definir la menor longitud posible Lp (longitud
de Planck), (Lp)2 = h G/c3, observamos que el cociente Lp2/h que liga el
cuanto de acción con la superficie de Planck lo podemos igualar a un cociente
de constantes G/c3(constante de la gravitación universal dividida por
velocidad de la luz al cubo). A priori, parece lógico que si en un universo
nuevo emergente, más "borroso" que el nuestro, el valor del cuanto de
acción es mayor también lo debería ser la mínima longitud definible en él.
Por lo que vemos, realmente, queda relacionado el valor de h no con Lp
sino con Lp2 , con una superficie. Seguir leyendo...
Es significativo, porque la máxima información contenida en
cualquier región del espacio depende de la superficie que la
envuelve, expresada en unidades mínimas de superficie de
Planck (Lp2 ). En cierta forma parece que, en el hipotético caso de que
en otros universos la constante de mínima acción de Planck sea diferente,
ésta estaría relacionada con la cantidad de información que puedan encerrar
dichos universos.

Reedición del post del mismo título de fecha 18/2/2011. Un abrazo amigos.

2014/01/26

Sobre el amor, las ciencias y las letras

Libro de notas cerró el pasado 20 de diciembre, después de más de 10 años y 200.000 seguidores en twitter. Era "El diarío de los mejores contenidos de La Red en español" y  tuve el honor de ser colaborador del mismo durante seis años. Esta fue mi última columna:
Una personita muy importante para mí, con apenas cinco años, me sorprendía con afirmaciones trascendentes sobre el infinito y algunas otras cuestiones peliagudas. Recuerdo que un día me dejó perplejo al soltarme a bocajarro: “ Papá, el infinito nunca para, siempre se está haciendo”. No sé cómo llegó a esa conclusión ni en base a qué, pero en su mente infantil era una evidencia pura e incontestable. Aquellas afirmaciones parecían relacionadas con las cuestiones sobre la vida, la muerte o el mundo que parecen preocupar en un momento determinado de la primera infancia a muchos niños.
Han pasado los años y con veintiuno ha descubierto algo tan inconmensurable como aquello: el amor. Cuando le dije que iba a escribir el último post en LdN me volvió a dejar perplejo, como tantas veces más: me pidió que lo escribiera sobre ese sentimiento tan importante en nuestras vidas (¡¿?!). Entonces me vino a la mente una antigua reflexión que versaba sobre el Paraíso Perdido y la perfecta comunicación que debimos perder con él :” Nuestra obsesión por hacernos oír, por comunicarnos debe venir de la añoranza del Paraíso Perdido. No puedo imaginar un Paraíso más perfecto que aquel en que cada pensamiento y sentimiento se comunicaban “sin llegar a comunicarse”. Sólo pensando o sintiendo se hacían, de inmediato, “públicos” . No existía diferencia entre público y privado, todo debía fluir espontáneamente, sin salir del yo ya era de todos y al contrario. No había barreras, no había límites… “
En la medida que la incomunicación nos hace desgraciados, imagino lo dichosos que nos debía hacer la perfecta comunicación (amor) en el Paraíso Perdido”. El amor llena el ansia de completud que tenemos desde que perdimos el Paraíso y se nos desterró al aislamiento e incompletud de nuestro ser. Cuando amamos somos uno con el ser amado, volvemos a ser completos, recuperamos lo perdido y por eso, mientras no lo encontramos, pasamos la vida buscándolo. Eso vale para las personas y, en cierta forma, para lo que nos hace felices. Y ahí entran, también, nuestras aficiones, nuestros pequeños o grandes amores por las ciencias o las letras: amor por el teatro, por la literatura, por la pintura … y, ¿por qué no?, por las matemáticas y sus hermosos teoremas, o por la física, o por los animales y la biología…
Gerald Holton es profesor de física e historiador de la ciencia en Harvard y un verdadero especialista en Einstein, hasta tal punto que fue la persona elegida por la familia del científico para clasificar toda su documentación, después de su muerte. Una vez, le preguntaron, cuál es la característica esencial de un científico y Holton respondió: “Tal vez mis colegas sonrían, pero creo que igual que algunas personas están enamoradas del dinero y otras se enamoran del arte, los científicos están enamorados de la química o de la física o de las matemáticas… El científico se enamora muy joven y deja todo de lado por ese amor . Stephen Jay Gould decía que la ciencia significa que al final del día, en el laboratorio, sabes que el 99% del tiempo de trabajo ha sido tiempo perdido, y encima todavía tienes que limpiar las jaulas de los ratones. La ciencia es una actividad que exige muchísima dedicación y tiempo”.
La ciencia, el arte o la filosofía, por ejemplo, cuando los amamos de verdad nos hacen completos. Y en ocasiones llegamos a tener “relaciones” tormentosas no sólo con la persona que amamos sino con nuestras más arraigadas aficiones, capaces de absorbernos totalmente. En todo lo que nos enamora siempre está la búsqueda de la felicidad y la completud “perdida”.
Al final el amor y el infinito no son tan distintos. En cierta forma ese infinito de los cinco años se corresponde con el infinito que llena el corazón enamorado a los veintiuno .
Despido esta columna, después de casi siete años, con una última reflexión sobre las ciencias y las letras: No es tan diferente un científico de un poeta (un artista). La poesía está ahí, como las leyes de la naturaleza o el más precioso de los teoremas, solo hace falta descubrirla. El poeta descubre la belleza, al igual que el científico; extrae la poesía de la realidad, de la misma forma que el científico es capaz de extraer las leyes que la gobiernan. Ante la armonía, la simplicidad inteligente y la belleza de las soluciones que adopta la naturaleza, el científico se convierte en poeta. Y sólo así es capaz de desentrañar sus leyes más profundas. De hecho, las simetrías desempeñan un papel esencial en la ciencia actual. Se han realizado espectaculares descubrimientos con la simple presunción, y posterior comprobación, de ciertas simetrías matemáticas – ¿poesía? – que la naturaleza se empeña en respetar. Hasta tal punto es así que la aventura científica se convierte en la búsqueda de las más sencillas y potentes simetrías capaces de descifrar, de la forma más simple, la aparente complejidad del mundo que nos rodea . En cierta forma, la complejidad, tal como la entendemos y vivimos, no es más que un reflejo de nuestras propias limitaciones. La poesía es capaz de soslayarlas y dejarnos entrever el mundo maravilloso que existe más allá de nuestros límites racionales. El progreso de la ciencia necesita del científico/poeta capaz de cambiar el marco de nuestra visión miope de la realidad.
Cambiando las referencias de partida las preguntas más complejas se convierten en respuestas obvias. Cada vez que las preguntas se complican necesitamos reformularlas dentro de un nuevo marco en el que se hace imprescindible la valentía del artista/científico y el rigor del científico/artista. El arte es humano y la ciencia también. Y en todo lo humano cuenta, y mucho, el corazón .
A mis hijas Alba y Zoe
¡¡¡Viva LibrodeNotas !!!