2015/08/26

Estabilidad fractal y restricción de los grados de libertad



Hace unos días, en un viaje familiar a la Provenza francesa, conocí a Javier, un joven físico valenciano, que goza de una beca nada menos que en las instalaciones del reactor nuclear de fusión ITER. El ITER es un experimento científico a gran escala que intenta demostrar que es posible producir energía de forma comercial mediante fusión nuclear. Los participantes en el diseño conceptual de actividades del ITER eligieron esta palabra para expresar sus esperanzas comunes en que el proyecto podría conducir al desarrollo de una nueva forma de energía. ITER significa el camino en latín, y refleja el rol de ITER en el perfeccionamiento de la fusión nuclear como una fuente de energía para usos pacíficos.  Se está construyendo en Cadarache (Francia) y costará 14 000 millones de euros, convirtiéndose en el quinto proyecto más costoso de la historia (Wikipedia).

Para conseguir el objetivo final, energía barata, limpia e inagotable, se simulan los procesos de fusión nuclear que se producen en las estrellas con un plasma de hidrógeno (deuterio y tritio, dos isótopos del hidrógeno) con temperaturas de más de 100 millones de grados, y se necesita dotar de la mayor estabilidad posible dicho plasma.

Reactor de fusión

Aunque es muy posible que el tema fractal y la consiguiente estabilidad relacionada con la restricción de grados de libertad no pueda ayudar en los procesos de estabilización del plasma, me vi tentado a comentarle dicha posibilidad a Javier (al fin y al cabo con soluciones fractales y multifractales se ha podido estudiar la turbulencia mucho mejor que con cualquier otro método). De hecho, la cuestión esencial es la siguiente:


---Dimensión fractal
La dimensión fractal depende de dos factores que se suman: la dimensión topológica y un coeficiente dimensional, tanto más grande como irregular sea el fractal. Así, podemos tener trayectorias fractales (Nota 1) de dimensión 3, mientras que su dimensión topológica sólo es 1 (es una línea). Lo interesante es que las líneas fractales tienen una dependencia muy clara y notable con la distancia (Nota 2) y su forma de distribución espacial. De hecho, simplemente sabiendo que la línea fractal tiene dimensión 3 podemos asegurar que para alejarse de un punto arbitrario del espacio n pasos efectivos el fractal debe desplazarse n3 pasos reales. 


---Dependencia de los fractales con la distancia
Esta dependencia de las líneas fractales con la distancia se puede extender a superficies o a espacios con dimensión topológica mayor de una forma sencilla, siempre que las propiedades del fractal sean lo más isótropas posibles. Para ello dividimos la dimensión fractal del objeto a estudiar por su dimensión topológica y al resultado lo llamaremos dimensión fractal relativa. En cierta forma convertimos al fractal estudiado en una línea fractal, aunque lógicamente la trasformación no conserva las propiedades direccionales o anisótropas del fractal original.


---Estabilización de un fractal con la restricción de grados de libertad (dimensiones)
Vamos a ver un sencillo cálculo sobre todo esto: Imaginemos un fractal con dimensión topológica d y con un coeficiente dimensional e . Su dimensión fractal será:  d + e . Y su dimensión fractal relativa será: 

                  Dimensión fractal relativa = (d + e)/d  (Expresión A).
 
Reactor de fusión ITER
Ahora supongamos que restamos al número de dimensiones topológicas (grados de libertad) un valor igual a e de forma que d se convierte en d - e (nuevo valor de las dimensiones significativas). Entonces, el nuevo valor de la dimensión fractal relativa será (sustituyendo d por d-e):

                 Dimensión fractal relativa = d /(d-e) (Expresión B).   

Hay una diferencia significativa entre la (Expresión A) y la (Expresión B), la primera sólo puede ser positiva pero la segunda puede ser, también, negativa. De hecho, como ejemplo, para el valor de las nuevas dimensiones significativas d igual a e/2, obtenemos que el valor de la Expresión B será -1.


Las expresiones A y B representan la dependencia del fractal (de su magnitud escalar) con la distancia. Como la expresión A siempre es positiva la inestabilidad que representa el fractal cada vez será mayor con la distancia, en cambio la expresión B puede hacerse negativa y eso indica que la inestabilidad, por el contrario, disminuirá con la distancia.



¿En la práctica cómo podemos realizar una reducción de dimensiones? Veremos un ejemplo sumamente sencillo, sólo para esclarecer la cuestión. Imaginemos una tubería cuadrada de (10 cm.) X (10 cm.) por la que circula un flujo de agua. Si de forma gradual disminuimos una de las dimensiones de la tubería y aumentamos la otra (sin variar la sección), podríamos acabar con una tubería, por ejemplo, de (100 cm.) X (1 cm.) Una de las dimensiones, en la práctica y para cierto tipo de fenómenos que se den en espacios mucho mayores de 1 cm, es como si hubiera desaparecido.





 (Nota 1) En sentido estricto no se puede hablar de verdaderas trayectorias, pues no tienen nada que ver con las trayectorias clásicas de los objetos que conocemos.

(Nota 2) B. Mandelbrot :Los objetos fractales. Tusquets Editores, Barcelona, 1987. Ver los primeros conceptos, sobre el cálculo de la dimensión de líneas fractales clásicas. A partir de ese sencillo cálculo se hace evidente 

2015/08/08

Gravitación cuántica, distancia fundamental, y teoría de cuerdas



La teoría de la relatividad general de Einstein establece una relación directa entre la gravitación y la geometría del espaciotiempo. Esto supone que una teoría cuántica de la gravitación implicará una estructura cuántica del propio espaciotiempo. Y en esta estructura deberá jugar un papel importante una especie de "cuanto espacial", o mínima distancia de interacción. Un nuevo límite fundamental en la Naturaleza, similar a la velocidad de la luz o al cuanto de acción, ahora en la escala de las distancias.

Las dos grandes teorías físicas de las que disponemos, la relatividad general y la mecánica cuántica parecen no llevarse bien entre ellas. La relatividad general está formulada de una manera clásica y esa esencia choca con la formulación cuántica. De hecho, la aplicación directa de las reglas de la mecánica cuántica a la teoría de gravitación de Einstein da lugar a inconsistencias matemáticas. El camino más fácil es intentar formular una teoría cuántica de las ondas gravitacionales, o "arrugas" o vibraciones de la geometría espaciotemporal similares a las ondas electromagnéticas. Cuánticamente, se pueden ver como conjuntos coherentes de partículas, de la misma forma que una onda electromagnética es un conjunto coherente de fotones. Los equivalentes gravitacionales de los fotones se denominan gravitones.

---Distancia fundamental---

A medida que consideramos distancias cada vez menores, las interacciones entre gravitones producen cascadas de creación y aniquilación demasiado violentas, de tal forma que la delicada estructura que funcionaba para las demás partículas fracasa estrepitosamente para los gravitones. Existe una especie de realimentación en la interacción entre gravitones, pues interactúan mediante otros gravitones y esto hace que se pierda la sencilla linealidad que presentan otras fuerzas. Esta cuestión es la causante de que la teoría cuántica de los gravitones no sea renormalizable.

Lo más asombroso es que, por lo que se sabe en otros casos similares de teorías no renormalizables, una explicación posible es que el gravitón no sea una partícula fundamental, sino que tenga componentes a una escala de distancias determinada por la intensidad intrínseca de la interacción gravitacional. Si esto es correcto, el gravitón revelaría sus componentes en la vecindad de al escala de Planck, la única magnitud con dimensiones de longitud que se puede formar con las tres constantes fundamentales de la física, c, h y G (unos 10-33 centímetros).

Para que nos hagamos idea de la dificultad a la que nos enfrentamos en la formulación de una teoría cuántica de la gravitación, a la distancia de Planck las fluctuaciones cuánticas cambian la estructura geométrica e incluso topológica del espaciotiempo, pudiendo crear agujeros incluso negros microscópicos, de ahí que sean tan importantes a esas distancias como los gravitones. Esta es la vieja idea de Wheeler, que habló de la estructura "espumosa" del espaciotiempo cuántico.

---Teoría de cuerdas y agujeros negros---

Otra vez nos encontramos con nuestros viejos amigos lo agujeros negros, ahora en forma microscópica como resultado de las fluctuaciones cuánticas a escalas de la distancia de Planck. Lo que hemos aprendido de ellos, pero sobre todo la teoría de cuerdas, o la idea de que las partículas que denominamos elementales son en realidad objetos extensos en una dimensión, cuerdas diminutas cuya dinámica esta especificada por sus modos de vibración: cada modo de vibración independiente representaría un tipo diferente de partícula. Esta teoría, básicamente muy sencilla en sus planteamientos iniciales, conduce a una estructura matemática de riqueza insospechada, cuya exploración por parte de físicos y matemáticos aún pertenece a las generaciones futuras.

Hay dos clases básicas de cuerdas, según sean cerradas sobre sí mismas o abiertas, con los extremos libres. Las cuerdas cerradas siempre tienen un modo de vibración que se puede identificar con el gravitón, mientras que las cuerdas abiertas siempre tienen un fotón. El resultado es que las cuerdas predicen la existencia de gravitación en el sector cerrado, y de interacciones del tipo de la interacción electromagnética en el sector abierto. Pero se ha descubierto que las cuerdas no son los únicos objetos fundamentales de la teoría, existen regiones singulares a las cuales las cuerdas abiertas estarían enganchadas, se conocen como D-branas: pueden ser objetos puntuales (D-partículas), tener una dimensión (D-cuerdas), dos dimensiones extendidas (D-membranas), etc.

Cuando las cuerdas o D-branas (generalizando) alcanzan un alto grado de excitación sobre su estado de mínima energía, se convierten en agujeros negros. Esto se entiende bastante bien a nivel cuantitativo gracias a un importante cálculo de Andrew Strominger y Cumrum Vafa, de la Universidad de Harvard, aunque sólo en el caso de agujeros negros con mucha simetría. En este caso el número de estados de un agujero negro, según los cálculos independientes (no cuerdísticos) de Bekenstein y Hawking, coincide con el de un sistema adecuado de D-branas.

---Espaciotiempo no conmutativo, el principio básico---

Como en el caso de la mecánica cuántica, en que el principio básico del que emanaba las propias relaciones de indeterminación de Heisenberg era la no conmutatividad entre posiciones y velociadades, la imposibilidad por principio de conocer ambas cantidades con total definición, en nuestro caso de una teoría de la gravitación cuántica se busca un principio de no conmutatividad puramente espaciotemporal. El tipo de estructura matemática necesaria fue descubierto por el matemático francés Alain Connes en los años ochenta, una geometría cuántica en la cual las coordenadas espaciales son matrices que no conmutan entre sí, en analogía exacta con las posiciones y velocidades de una partícula. De hecho ya se ha comprobado que las cuerdas abiertas poseen propiedades matemáticas que recuerdan esta geometría no conmutativa. Posteriormente se ha llegado a la conclusión de que las D-branas son los propios ladrillos del espaciotiempo: el espaciotiempo adquiere así una naturaleza granular a la escala de Planck, una especie de retículo de D-branas trenzadas mediante las cuerdas abiertas.

Una propiedad matemática tan elemental como es la no conmutatividad está en la base de lo que será la futura teoría de gravitación cuántica. Los retículos espaciales que sustituyen a las coordenadas no conmutan, es decir si X es el operador cuántico de la coordenada x e Y es el operador de la y, el producto XY es diferente al producto YX. Las coordenadas clásicas son simples números reales que por descontado son conmutables, pues da lo mismo multiplicar las coordenadas xy en ese orden o en el contrario yx. Esta diferencia tan abismal nos da una idea de la nueva complejidad necesaria para poder describir
 correctamente la realidad del espaciotiempo.


Redición de un antiguo post, clásico de este blog. Feliz verano amigos!!!