2015/12/26

Cantor, el infinito y más allá


Mi hija Alba cuando tenía cinco años me sorprendía con afirmaciones, aparentemente trascendentes, sobre el infinito y algunas otras cuestiones peliagudas. Recuerdo que un día me dejó perplejo al soltarme a bocajarro: " Papá, el infinito nunca para, siempre se está haciendo". No sé cómo llegó a esa conclusión ni en base a qué, pero en su mente infantil parecía una evidencia pura e incontestable. Después las matemáticas no han sido, precisamente, su fuerte pero aquellas afirmaciones parecían relacionadas con las cuestiones sobre la vida, la muerte o el mundo que parecen preocupar en un momento determinado de la primera infancia a muchos niños. El post sobre los números primos, su infinitud y su "misteriosa" distribución me hizo reflexionar sobre algunos aspectos del infinito que me han hecho recordar esta anécdota y publicar este post.



En la Grecia antigua Platón, Pitágoras y Aristóles entre otros, se planteaban la existencia del infinito y las contradicciones generadas a partir de la aceptación de su existencia. Aristóteles rechazó la idea del infinito dada las contradicciones que generaba. Sin embargo, lo concibió de dos formas diferentes las cuales son las nociones que tenemos actualmente de este concepto: el infinito potencial y el infinito actual. La noción de infinito potencial se centra en la operación reiterativa e ilimitada, es decir, en la recursividad interminable, por muy grande que sea un número natural, siempre podemos concebir uno mayor, y uno mayor que este y así sucesivamente donde esta última expresión "así sucesivamente'' encierra la misma idea de reiteración ilimitada, al infinito. Por otra parte, el infinito actual se refiere al un infinito existente como un todo o unidad y no como un proceso. Kant aceptaba la posición de Aristoteles y rechazaba el infinito actual por ser imposible de ser alcanzado por la experiencia. 

Georg Cantor:
El gran matemático alemán Georg Cantor dedicó gran parte de su vida al estudio del infinito, los distintos infinitos y el llamado continuo, y en el siglo XIX desarrolló la teoría de conjuntos intimamente relacionada con la teoría de números transfinitos. Cantor fundamentó una axiomática consistente que permite construir los conjuntos y posteriormente establecer el concepto de infinito. Para esto definió el concepto de "cardinalidad'' o "potencia'' de un conjunto.Dos conjuntos se dicen que tienen el mismo número de elementos, que tienen la misma cardinalidad o son equipotentes, si existe una función definida entre ellos de forma que a cada elemento de uno sólo le corresponde otro elemento del otro conjunto, y viceversa.



A partir de esta definición se puede establecer la idea de conjunto infinito. Se dice que un conjunto es infinito si existe un subconjunto con la misma cardinalidad o que es equipotente con él. Esta definición plantea una contradicción con la intuición, pues todo subconjunto como parte del conjunto total parece que deba tener menos elementos. Eso es así, efectivamente, en los conjuntos finitos, pero no en los infinitos como podemos observar con un ejemplo sencillo dentro del conjunto de los números naturales. Supongamos que al número natural 100.000.001 le hacemos corresponder el número 1, al 100.000.002 el 2, al 100.000.003 el 3 y así establecemos una correspondencia número a número tan extensa como queramos. Vemos que a cada elemento del subconjunto de números naturales que comienzan con el 100.000.001 le hacemos corresponder un número, y sólo un número del conjunto total de los números naturales, y viceversa.

Cantor se dio cuenta de que existen diferentes grados de infinitud comparando los infinitos de los números naturales N {1,2,3,...n}, racionales Q (fracciones) y reales R(racionales + irracionales). Al cardinal infinito del conjunto de los números naturales le asignó el número llamado Aleph-0 y vio que era del mismo orden que el correspondiente a los números racionales, aunque estos son mucho más densos en la recta. Pero en el caso de los números reales su cardinal transfinito es de mayor orden pues su conjunto no es numerable (no se pueden poner en correspondencia, uno a uno, con los números naturales). A este cardinal le asignó el nombre de Aleph-1 y se supone que R es capaz de llenar la recta por completo, si se admite la hipótesis del continuo (a diferencia de lo que ocurre con los números racionales, los enteros o los naturales).

El descubrimiento de la existencia de cardinales transfinitos supuso un desafío para un espíritu tan religioso como el de Georg Cantor. Y las acusaciones de blasfemia por parte de ciertos colegas envidiosos o que no entendían su trabajo no le ayudaron. Sufrió de depresión, y fue internado repetidas veces en hospitales psiquiátricos. Su mente luchaba contra varias paradojas de la teoría de los conjuntos, que parecían invalidar toda su teoría (hacerla inconsistente o contradictoria, en el sentido de que una cierta propiedad podría ser a la vez cierta y falsa). Trató durante muchos años de probar la hipótesis del continuo, lo que se sabe hoy que es imposible, y que tiene que ser aceptada (o rehusada) como axioma adicional de la teoría, como ocurre con el llamado quinto postulado euclidiano sobre las rectas paralelas. Si se admite tenemos una geometría plana consistente, y si no se admite tenemos nuevas geometrías no planas también consistentes.

Cantor al desarrollar la que él mismo bautizó "aritmética de los números transfinitos", dotó de contenido matemático al concepto de infinito actual. Y al hacerlo así puso los cimientos de la teoría de conjuntos abstractos, contribuyendo además, de forma importante, a fundamentar el cálculo diferencial y el continuo de los números reales. El más notable logro de Cantor consistió en demostrar, con rigor matemático, que la de infinito no era una noción indiferenciada. Sus resultados fueron tan chocantes a la intuición de sus contemporáneos, que el eminente matemático francés Henri Poincaré condenó la teoría de números transfinitos como una "enfermedad", de la que algún día llegarían las matemáticas a curarse.Y Leopold Kronecker, que fue uno de los maestros de Cantor, y miembro preeminente de la matemática institucional alemana, llegó incluso a atacarle directa y personalmente, calificándolo de "charlatán científico", " renegado" y "corruptor de la juventud".

Empezó a interpretar e identificar el infinito absoluto (que no es concebible por la mente humana) con Dios, y escribió artículos religiosos sobre el tema. Murió en una clínica psiquiátrica, aquejado de una enfermedad maníaco-depresiva.Hoy en día, la comunidad matemática reconoce plenamente su trabajo, y admite que significó un salto cualitativo importante en el raciocinio lógico.


Reflexiones:
Lo infinitamente pequeño o lo infinitamente grande, las iteraciones hasta el infinito en límites continuos o en fractales parecen conceptos ajenos a lo cotidiano, pero no es así. En las funciones continuas el cálculo infinitesimal (lo infinitamente pequeño) es una herramienta imprescindible para la ciencia y la tecnología, con ella parece que casi conseguimos tocar el propio infinito. Recuerdo la fascinación que consiguieron ejercer sobre mi mente adolescente los límites infinitos y las sumas infinitas de funciones que se aproximan a una función dada (series de Taylor), así como los cálculos de máximos y mínimos aplicados a cosas cotidianas (como el cálculo del mínimo material con el que construir un cazo de un litro de capacidad). Cuando todos estos cálculos lograban materializarse en algo concreto parecía pura magia.

Toda la revolución cuántica se basa en el cuanto de acción, la mínima acción no puede ser infinitamente pequeña o cero, como suponía la física clásica, y de esa propiedad básica emerge el mundo cuántico y toda su "magia". Por otra parte, se creía infinita la velocidad de la luz, pero de su finitud y de la constatación de que es una magnitud constante, independientemente del sistema de referencia, se ha llegado a la más bella teoría física creada por el hombre: la teoría de la relatividad. En estas dos teorías, en su necesaria conjunción descansa la esperanza de poder desentrañar los secretos más íntimos de la materia y del espacio-tiempo.

Para consultar:
- Revista Números : El infinito en las matemáticas.
-"Dios creó los números, los descubrimientos matemáticos que cambiaron la historia" de Stephen Hawking. Una biografía de los 17 mayores genios matemáticos (entre ellos Cantor) Ed. Crítica. ISBN:978-84-8432-753-0
-Muy interesante y completo, desde varios puntos de vista, el tomo 23 de la Revista Investigación y ciencia (año 2001):"Ideas del infinito".
-Estupenda web (de prueba) de Geocites sobre Cantor y los números transfinitos, por Joseph W. Dauben, de su libro:"George Cantor, Su Filosofía de la matemática y el Infinito" (Cambridge, Mass.: Harvard University Press, 1979; rep. Princeton, NJ: Princeton University Press, 1989).



Felices fiestas y feliz año amigos!!!

2015/11/26

Libertad cuántica


Hola amigos, en un tiempo tan complicado en el que nuestra libertad parece amenazada por la sinrazón y la barbarie, las partículas más elementales que forman toda la materia de nuestro universo nos dan una lección de su carácter indomable. La libertad, en cierta forma, está impresa más allá de nuestros genes en la esencia de la propia materia. Paso a reeditaros un antiguo post que habla de la "libertad cuántica". Un abrazo.



Las partículas elementales parecen poseer una cierta "libertad cuántica". Para ellas los sucesos no están estrictamente determinados, como lo fueron para las partículas en la física clásica del siglo XIX, y poseen un elemento de elección dentro de ciertos límites, siempre que en promedio obedecezcan las leyes clásicas. El cuanto de acción, h, les da esa libertad.

Tratemos de confinar un electrón dentro de un núcleo atómico. Después de todo ¿por qué no deben los electrones ser un componente de los núcleos como los protones y los neutrones? Los neutrones experimentan una desintegración radiactiva que los convierte en un protón y un electrón (radiación beta). Por tanto, un electrón atrapado por un protón para formar un neutrón parecería una idea razonable, pero el electrón rehúsa cooperar, se niega a ser confinado.

Un electrón confinado a un espacio de dimensiones nucleares debe tener longitudes de onda asociadas a él tan cortas, al menos, como el diámetro del núcleo. Si las ondas fueran mayores significaría que el electrón consume la mayor parte de su tiempo fuera del núcleo, y eso no funcionaría. Sin embargo, las longitudes de onda cortas implican una restricción en espacio, y ello debe estar equilibrado por un incremento del momento con objeto de conservar su cuanto de acción fundamental, h ( (incremento de espacio) x (incremento de momento) = cuanto de acción (h)) . El electrón tendría tanta energía cinética que saldría de su jaula nuclear. El encarcelamiento no puede realizarse. Los electrones no pueden existir dentro del núcleo en un estado estable, a menos que se ejerza una tremenda fuerza para vencer su empuje hacia la libertad.

Sólo una fuerza tan inmensa como la presión de una estrella que se desintegra bajo su propia gravedad puede apiñar electrones en núcleos para formar un cuerpo compuesto completamente por neutrones: la estrella de neutrones. Y ello es una medida gráfica de lo fuerte que es la urgencia de libertad del electrón. Necesita que un cuerpo del tamaño de una estrella se siente sobre él.


Cada vez que tratamos de restringir la libertad cuántica de un electrón, ya sea forzándolo a entrar en algún espacio o dirigiéndolo a través de hendiduras, éste insiste en su libertad de acción y la manifiesta de una forma característica, y no sólo de forma pasiva. Puede promover su libertad violando las leyes ( clásicas) de la conservación de la energía y el momento.


Del estupendo librito " Tiempo, espacio y cosas", de B.K. Ridley, título original "Time, space and things", publicado por Cambridge University Press. Traducción de 1989 del Fondo de Cultura Económica. Pura belleza al servicio de la divulgación científica.

Reciente teoría:

Puede que el comportamiento de las partículas cuánticas no sea tan extraño. Según una reciente teoría que conjuga nuestro conocimiento sobre fractales y agujeros negros, las partículas podrían ser comparadas con una serie de trenes moviéndose sobre una intrincada red fractal de vías. La aparente libertad que observamos en su movimiento se ciñe a ese entramado de vías que desconocemos. No podemos forzar cualquier movimiento arbitrario que permita que el “tren se salga de la vía”.
Ese entramado de vías se correspondería con el llamado conjunto invariante del universo, un mínimo de información subyacente que engloba el número total de estados posibles en el mismo. La supuesta libertad del electrón se ceñiría a seguir ese conjunto mínimo de información que determina, aunque no lo veamos, sus movimientos. (Ciencia Kanija).

2015/10/31

Teoría de cuerdas, números primos y conjetura de Goldbach

La consistencia de la teoría de cuerdas con la que se intentaba explicar la fuerza fuerte, a finales de los 60, requería de 25 dimensiones espaciales en lugar de las 3 usuales,  y además sólo contemplaba partículas bosónicas. A principios de los años 70, para corregir la falta de fermiones, apareció la teoría de supercuerdas y se establecía una simetría entre bosones y fermiones llamada supersimetría. Ahora la consistencia de la teoría requería de “sólo”  9 dimensiones espaciales.

Trayectoria de una cuerda cerrada: Imagen de Tecnociencia.com

En ambos casos el exceso de dimensiones se resuelve con la compactificación de 22 o de 6 dimensiones. Como curiosidad podemos observar que 9 es el cuadrado de 3 (primo) y 25 es el cuadrado de 5 (primo), y por otra parte 22 es 2x11 (primo) y 6 es 2x3 (primo). Como los números primos y sus propiedades siempre resultan interesantes empecé a imaginar una posible ley de formación basada en cuadrados y dobles de primos.


Así, siguiendo la secuencia de los números primos al cuadrado tendríamos:


(Primo_inicial2 -3)/2 = Primo_final {Fórmula inicial}, es decir…
(32 -3)/2 = 3;    (52 -3)/2 = 11;    (72 -3)/2 = 23;    (112 -3)/2 = 59;    (132 -3)/2 = 83   …


Empieza a fallar en el 17, pero sigue cumpliéndose para el 19, 23, 29, 31, 37 y 41. En el 43 vuelve a fallar, pero si en lugar de restar 3 restamos 11 vuelve a cumplirse la ley para 17 y 43. Conforme intentamos seguir observamos que la fórmula inicial deberíamos cambiarla por otra más general:


(Primo_inicial12 – Primo_inicial2)/2 = Primo_final {Fórmula final}


Por desgracia, pronto nos damos cuenta de que la expresión se cumple tanto para un cuadrado de primo como para cualquier otro cuadrado de número impar. Está más que claro que los números primos nunca son tan fáciles de domar. “Conociéndolos” no es difícil asegurar que una expresión tan sencilla, utilizada como generadora, no cabe en su alma indómita.

Conjetura de Goldbach

En realidad la expresión no es otra que la llamada conjetura débil de Goldbach: “Todo número impar mayor de 5 se puede escribir como suma de tres números primos”. Pues:
 Primo_inicial1 2 = Número_impar = Primo_inicial2 + 2xPrimo_final 


Por otra parte, la llamada conjetura fuerte de Goldbach dice:” Todo número par mayor que 2 puede escribirse como suma de dos primos”. Enunciado terriblemente sencillo, y diabólico por la extrema dificultad que entraña probar su veracidad.


“En teoría de números, la conjetura de Goldbach es uno de los problemas abiertos  más antiguos en matemáticas. A veces se le califica del problema más difícil en la historia de esta ciencia. Concretamente, G.H. Hardy en 1921 en su famoso discurso pronunciado en la Sociedad Matemática de Copenhage1 comentó que probablemente la conjetura de Goldbach no es sólo uno de los problemas no resueltos más difíciles de la teoría de números, sino de todas las matemáticas” (Wikipedia).


Y para acabar:
Empezando desde el 3 hasta el 127, los 30 casos en que hemos probado la expresión con la {Fórmula inicial}, en  20 ocasiones ha resultado cierta con la resta del 3. En algunos otros casos funcionaba restando el 11 o el 27, por ejemplo, tal como se ha comentado más arriba. En ocasiones se encadenaban varias veces los resultados. Por ejemplo:

(72 -3)/2 = 23 (primo) =>  (232 -3)/2 = 263 (primo) =>  (2632 -3)/2 = 34583 => (345832 -3)/2 = 597 991 943 (primo) ... el siguiente paso ya no da un número primo: 178 797 181 946 457 623, pues sus factores primos son 23*37*3152147*66653759.

El porcentaje de fallos/aciertos de la expresión {Fórmula inicial}, con la resta de 3, en los 30 primeros casos (n=30) es de 1/2. Con n tendiendo a infinito posiblemente el porcentaje tienda a cero, pero corrigiendo el 3 por el 11, el 27 o cualquier otro número primo (como hemos visto en alguno de los casos) el porcentaje será mayor de cero... Como podéis observar cualquier pequeñísima parcela que deseemos estudiar del campo de los números primos se vuelve más y más intrincada e interesante, y la mayoría de las veces parece como el agua que intentamos retener y se nos escapa entre los dedos.

Los siguientes post  nos  aportan un poco más de información sobre cuerdas y números primos:
  



Un abrazo amigos.




2015/09/30

Los tres primeros minutos del Universo


Este es el título de un clásico de la divulgación científica. El Premio Nobel de Física de 1979 y profesor de la Universidad de Harvard Steven Weinberg nos explica en unos cuantos "fotogramas" la evolución de los tres primeros minutos del universo, previa introducción sobre la expansión del universo y sobre el fondo de radiación. Sus conocimientos sobre el microcosmos, sobre las partículas más pequeñas que forman la materia, nos abren las puertas a un espectáculo grandioso y único. Admite que no se puede empezar la "película" en el tiempo cero y con temperatura infinita, pero las cosas parecen bastante claras ya en el:

Primer fotograma: Cuando apenas ha transcurrido una centésima de segundo y la temperatura se ha enfriado hasta unos cien mil millones de grados Kelvin o absolutos ( el cero está sobre los -273 ºC), el universo está lleno de una sopa indiferenciada de materia y radiación, en estado de casi perfecto equilibrio térmico. Las partículas que más abundan son el electrón y su antipartícula, el positrón, fotones, neutrinos y antineutrinos. El universo es tan denso que incluso los huidizos neutrinos, que apenas interactúan con la materia, se mantienen en equilibrio térmico con el resto de la materia y radiación debido a sus rápidas colisiones. La densidad de la masa-energía en ese momento es del orden de 3,8 mil millones de veces la densidad del agua en condiciones terrestres normales. El tiempo característico de expansión del universo es de 0,02 segundos y el número de partículas nucleares (protones y neutrones) es del orden de un nucleón por 1000 millones de fotones, electrones o neutrinos. Las reacciones más importantes son: (a)Un antineutrino más un protón dan un positrón más un neutrón y viceversa.(b) Un neutrino más un neutrón dan un electrón más un protón y a la inversa.

Segundo fotograma: La temperatura ahora es de 30.000 millones de grados Kelvin y desde el primer fotograma han pasado 0,11 segundos. Nada ha cambiado cualitativamente, aunque la densidad de la energía ha disminuido con la cuarta potencia de la temperatura y el ritmo de expansión ha disminuido con su cuadrado. El tiempo característico de expansión es ahora de 0,2 segundos y las partículas nucleares todavía no se hallan ligadas a núcleos, aunque con la caída de la temperatura es ahora más fácil que los neutrones, más pesados, se conviertan en protones que al revés. Su balance es del 38% de neutrones por el 62% de protones.

Tercer fotograma: La temperatura del universo es de 10.000 millones de grados Kelvin. desde el primer fotograma han pasado 1,09 segundos y la densidad y la temperatura han aumentado el tiempo libre medio de los neutrinos y antineutrinos que empiezan a desacoplarse de la radiación, electrones y positrones y a comportarse como partículas libres. La densidad total de la energía es menor que en el fotograma anterior en la cuarta potencia de la razón de las temperaturas, por lo que viene a ser unas 380.000 veces mayor que la del agua. El tiempo característico de expansión es ahora de unos 2 segundos y los positrones y electrones comienzan a aniquilarse con mayor rapidez de la que pueden ser recreados a partir de la radiación. Todavía no se pueden formar núcleos estables, y la proporción neutrón-protón es ahora 24-76 %.

Cuarto fotograma: La temperatura es ahora de 3.000 millones de grados Kelvin, han pasado 13,82 segundos del primer fotograma y los electrones y positrones empiezan a desaparecer como componentes destacados del universo. El universo está lo bastante frío para que se formen diversos núcleos estables, como el helio común formado por dos protones y dos neutrones (He4). Los neutrones aún se convierten en protones, aunque más lentamente. La proporción de nucleones es ahora del 17% de nuetrones y del 83% de protones.

Quinto fotograma: La temperatura es de 1.000 millones de grados, sólo 70 veces más caliente que el Sol.Desde la primera imagen han pasado tres minutos y dos segundos. Los electrones y positrones han desaparecido, en su mayor parte, y los principales componentes del universo son ahora fotones, neutrinos y antineutrinos. Ahora el universo está lo suficientemente frío para que se mantengan unidos los núcleos del tritio y helio tres, así como los del helio ordinario, pero no se pueden formar, todavía, cantidades apreciables de núcleos más pesados. El balance neutrón-protón es ahora del 14-86 %.

Un poco más tarde: A los tres minutos y cuarenta y seis segundos del primer fotograma, la temperatura es de 900 millones de grados Kelvin y comienza la nucleosíntesis, la proporción en peso de helio es ya el doble de la proporción de neutrones entre las partículas nucleares, es decir del orden del 26%. A los 34 minutos y cuarenta segundos del primer fotograma (300 millones de grados) los procesos nucleares se han detenido y las partículas nucleares están ahora en su mayoría ligadas a núcleos de helio o son protones libres. hay un electrón por cada protón libre o ligado, pero la temperatura es todavía alta para que formen átomos estables.

Durante 700.000 años más el universo seguirá expandiendose y enfriándose, pero no ocurrirá nada de interés.Después podrán formarse núcleos y átomos estables y la falta de electrones libres hará que el contenido del universo sea transparente a la radiación. El desacoplamento de la materia y la radiación permitirá a la materia comenzar a crear galaxias y estrellas."Después de otros 10.000 millones de años, aproximadamente, los seres vivos comenzarán a reconstruir esta historia".El primer fotograma podría resumirse como:" Al principio fue la luz". La radiación (luz) y la materia en equilibrio térmico y estado indiferenciado. Es la impresión más fuerte que guardo de cuando leí el libro la primera vez.

Libro:
"Los tres primeros minutos del universo". Steven Weinberg. Madrid 1980. Alianza Universidad. 
Nota: La segunda figura es el mapa de las anisotropías del fondo de radiación cósmica.

Reedición de uno de mis post clásicos. Un saludo amigos!!!

2015/09/20

Modulando geométricamente la dimensión y las características espaciales de un fractal. Punto característico

La dimensión fractal relativa, como veremos, nos da una idea más clara, que la simple dimensión fractal, del grado de irregularidad del fractal y de ciertas características espaciales del mismo. Por otra parte, modificando la geometría del espacio en el que está inmerso el objeto fractal podemos conseguir variar, significativamente, sus propiedades espaciales. Incluso hasta el punto de hacer desaparecer sus características más evidentes como fractal.

Fractal

Dimensión fractal relativa y dependencia espacial de un fractal:
Supongamos una superficie fractal con dimensión D = 2,356.  El valor de la dimensión que excede a 2 nos da una medida de la irregularidad del fractal y la llamaremos ε. Entonces, la dimensión fractal D = δ + ε  (dimensión topológica o aparente más coeficiente dimensional ε). El coeficiente dimensional ε, en cierta forma, nos ofrece una idea de la capacidad del fractal para ocupar parte de la tercera dimensión y, por tanto, del espacio. Podemos tener otro fractal con el mismo valor dimensional y, sin embargo, ser mucho más irregular que el primero: por ejemplo una curva que casi llene el espacio. Puede tener la misma dimensión, pero es mucho más irregular porque su dimensión topológica es 1, a diferencia de la superficie fractal cuya dimensión topológica es 2. Vemos así que la dimensión de un fractal no nos da una idea real de su irregularidad si no la comparamos con su dimensión topológica.

Para variables con dimensión topológica distinta de la unidad es conveniente hablar del cociente D/ δ, que llamaremos dimensión fractal relativa, más que, simplemente, de su dimensión fractal. Reducimos así la dispersión de resultados y encontramos más fácilmente símiles con ejemplos sencillos como trayectorias unidimensionales. Tendremos:

(1)   Dimensión relativa = D/ δ = ( δ + ε ) / δ. Esta expresión nos ayudará a entender cómo se pude modular la dimensión y las características de un fractal modificando la geometría del espacio.

Pero antes nos fijaremos en una propiedad muy interesante que presentan las curvas fractales continuas como son la curva de Kocho el movimiento browniano. Concretando el caso del movimiento browniano, su dimensión es 2 pues es capaz de recubrir una superficie: esto está relacionado con que este movimiento para alejarse N pasos efectivos de cualquier punto arbitrario necesita recorrer N2  pasos totales. Esa capacidad de “vagabundeo” está íntimamente relacionada con la dimensión fractal. Generalizando:
(2)   Distancia efectiva dimens.fractal = Distancia total sobre el fractal.   
      
La expresión de la dimensión fractal relativa, en cierta forma, nos reduce cualquier fractal continuo de dimensión topológica mayor que la unidad a una especie de curva fractal equivalente. Cuanto más isótropo sea el fractal más fiel será la conversión realizada, porque ésta lógicamente no conserva las propiedades direccionales o anisótropas del fractal original. Una vez realizada la conversión podremos aplicar la expresión (2), aunque con mucho cuidado, considerando las características de cada fractal con el que estemos trabajando. Sustituiremos en la expresión (2) la dimensión fractal por la generalización que supone la dimensión fractal relativa.

En el caso de un fractal de dimensión topológica 2, al calcular su dimensión fractal estamos comparando una superficie plana con otra rugosa y de esa comparación extraemos el valor de su dimensión. En el caso de fractales de dimensión topológica 3 o más hacemos algo similar, por lo que en general al dividir la dimensión fractal por la dimensión topológica, para averiguar la dimensión fractal relativa, obviamos el número de dimensiones y volvemos a una  comparación entre magnitudes de una sola dimensión.

Sumando o restando dimensiones:
Dimensiones compactadas
Volviendo a la superficie fractal del comienzo, vemos que el coeficiente dimensional ε se añade a la dimensión topológica. A partir de esta constatación nos podemos hacer la siguiente pregunta: ¿Existe algún fenómeno que represente una resta de dimensiones? Desde luego, si a una superficie la enrollamos a lo largo de una de sus dimensiones hasta convertirla en una línea habremos pasado de un objeto de 2 dimensiones a otro de 1 dimensión, habremos restado una dimensión. En cierta forma, esta operación geométrica representa una resta de dimensiones mientras que la irregularidad de un fractal, expresada por el coeficiente dimensional ε, supone una suma a la dimensión topológica del objeto.

Con todo lo visto hasta ahora vamos a seguir avanzando hacia lo que se puede llamar la modulación geométrica de la dimensión y de las  características espaciales de un fractal. Imaginemos un fractal con dimensión D, dimensión topológica δ  y coeficiente dimensional ε. Si a este fractal aplicamos la transformación T capaz de enrollar o compactar un número de dimensiones ε1, la expresión (1) quedaría:
(3)   Dimensión relativa = ( δ - ε1 + ε ) / (δ - ε1)
Variando el valor εpodremos modificar tanto la dimensión del fractal como sus características espaciales. Para ε1= ε tenemos un punto característico que simplifica la expresión (3) dejándola en la forma:
(4)   Dimensión relativa característica = ( δ) / (δ - ε)
Para sistemas sin dimensiones compactadas tendremos la expresión (1) para definir la dimensión fractal relativa y, por tanto, la dependencia espacial del fractal con la distancia. Para sistemas con dimensiones compactadas tenemos la expresión (3).
Supongamos un sistema con dimensión fractal  δ + ε  y del que  conocemos la dependencia del fractal con la distancia que, además sorprendentemente, representa un exponente negativo, supongamos -1. Con estos datos y dado que la dependencia implica un exponente negativo sabemos que existen dimensiones compactadas. Aplicaremos la relación (3) y averiguaremos  ε1.En este caso el valor de εes  (2 δ + ε)/2. Si ese valor fuese igual a ε entonces  estaríamos en el caso de la expresión (4). Para ello δ/2 = ε.

Ejemplo significativo:
 (PhysOrg.com) - Por lo general, pensamos en el espacio-tiempo como cuatro dimensiones, con tres dimensiones espaciales y una dimensión de tiempo. Sin embargo, esta perspectiva euclidiana es sólo uno de las muchas posibles posibilidades  multi-dimensionales de espacio-tiempo. Por ejemplo, la teoría de cuerdas predice la existencia de dimensiones adicionales - seis, siete y hasta 20 o más. Como explican los físicos a menudo, es imposible visualizar estas dimensiones extra, sino que existen principalmente para satisfacer las ecuaciones matemáticas.
Lea más en: "El espacio tiempo puede tener propiedades fractales en una escala cuántica":    http://phys.org/news157203574.html 


Espuma cuántica
         Vacío clásico y vacío cuántico
 

El vacío clásico y continuo es, en cierta forma, como una costa lineal y regular, sin entrantes ni salientes. El vacío cuántico es muy diferente, sus fluctuaciones le confieren una estructura irregular que 
nos puede recordar la estructura fractal de las costas de los países. De “lejos” no es diferente del vacío clásico, pero de “cerca” nos ofrece una visión muy diferente, las fluctuaciones ganan protagonismo porque dependen del inverso de la distancia: a distancia mitad son el doble de intensas. Esta diferencia entre el vacío clásico y el cuántico se puede observar, perfectamente, tratando de seguir las trayectorias de las partículas subatómicas. En el vacío clásico estas están bien definidas y son líneas continuas, en el vacío cuántico no existen como tales, no son propiamente trayectorias pues conforme las tratamos de observar con más detalle, más irregulares aparecen. Son fractales con una dimensión 2. 

                                     ¿Vacío cuántico como un fractal? 


Todo esto hace pensar en la posibilidad de considerar el vacío cuántico como una fractal, en el que la energía de las fluctuaciones cuánticas determinaría su grado de irregularidad, y en base a su valor (un escalar) se podría calcular la dimensión fractal de estas fluctuaciones que conforman todo el espacio. 
Si admitimos esta posibilidad y  aplicamos la expresión (4), dado que la energía de las fluctuaciones del vacío dependen del inverso de la distancia:
Tendremos que, siendo δ = 3, el valor de (δ) / (δ - ε) = -1, luego ε = 6. 

Según esta hipótesis estaríamos en un universo con 6 dimensiones compactadas.

Referencias:

-B.MANDELBROT:Los objetos fractales. Tusquets Editores,Barcelona,1987

-G.COHEN-TANNOUDJI,M.SPIRO:La materia-espacio-tiempo .Espasa-Calpe,Madrid,1988

-S.WEINBERG, “ et al”:Supercuerdas¿Una teoría de todo?. Edición de P.C.W.Davies y
J.Brown.Alianza Editorial,Madrid,1990.

-M.KAKU: Hiperespacio .Crítica (Grijalbo Mondadori) ,Barcelona,1996.

-J. SALVADOR RUIZ FARGUETA: Estabilización cuántica y dimensiones
enrolladas. Nº 23, 2004, Revista Ciencia Abierta, Universidad de Chile.

-J.SALVADOR RUIZ FARGUETA: El sorprendente vacío cuántico. Revista
Elementos (Benemérita Universidad Autónoma de Puebla) nº 53 ,2004,
pp.52-53. ( También en la web:http://www.elementos.buap.mx/num53/htm/52.htm)

2015/08/26

Estabilidad fractal y restricción de los grados de libertad



Hace unos días, en un viaje familiar a la Provenza francesa, conocí a Javier, un joven físico valenciano, que goza de una beca nada menos que en las instalaciones del reactor nuclear de fusión ITER. El ITER es un experimento científico a gran escala que intenta demostrar que es posible producir energía de forma comercial mediante fusión nuclear. Los participantes en el diseño conceptual de actividades del ITER eligieron esta palabra para expresar sus esperanzas comunes en que el proyecto podría conducir al desarrollo de una nueva forma de energía. ITER significa el camino en latín, y refleja el rol de ITER en el perfeccionamiento de la fusión nuclear como una fuente de energía para usos pacíficos.  Se está construyendo en Cadarache (Francia) y costará 14 000 millones de euros, convirtiéndose en el quinto proyecto más costoso de la historia (Wikipedia).

Para conseguir el objetivo final, energía barata, limpia e inagotable, se simulan los procesos de fusión nuclear que se producen en las estrellas con un plasma de hidrógeno (deuterio y tritio, dos isótopos del hidrógeno) con temperaturas de más de 100 millones de grados, y se necesita dotar de la mayor estabilidad posible dicho plasma.

Reactor de fusión

Aunque es muy posible que el tema fractal y la consiguiente estabilidad relacionada con la restricción de grados de libertad no pueda ayudar en los procesos de estabilización del plasma, me vi tentado a comentarle dicha posibilidad a Javier (al fin y al cabo con soluciones fractales y multifractales se ha podido estudiar la turbulencia mucho mejor que con cualquier otro método). De hecho, la cuestión esencial es la siguiente:


---Dimensión fractal
La dimensión fractal depende de dos factores que se suman: la dimensión topológica y un coeficiente dimensional, tanto más grande como irregular sea el fractal. Así, podemos tener trayectorias fractales (Nota 1) de dimensión 3, mientras que su dimensión topológica sólo es 1 (es una línea). Lo interesante es que las líneas fractales tienen una dependencia muy clara y notable con la distancia (Nota 2) y su forma de distribución espacial. De hecho, simplemente sabiendo que la línea fractal tiene dimensión 3 podemos asegurar que para alejarse de un punto arbitrario del espacio n pasos efectivos el fractal debe desplazarse n3 pasos reales. 


---Dependencia de los fractales con la distancia
Esta dependencia de las líneas fractales con la distancia se puede extender a superficies o a espacios con dimensión topológica mayor de una forma sencilla, siempre que las propiedades del fractal sean lo más isótropas posibles. Para ello dividimos la dimensión fractal del objeto a estudiar por su dimensión topológica y al resultado lo llamaremos dimensión fractal relativa. En cierta forma convertimos al fractal estudiado en una línea fractal, aunque lógicamente la trasformación no conserva las propiedades direccionales o anisótropas del fractal original.


---Estabilización de un fractal con la restricción de grados de libertad (dimensiones)
Vamos a ver un sencillo cálculo sobre todo esto: Imaginemos un fractal con dimensión topológica d y con un coeficiente dimensional e . Su dimensión fractal será:  d + e . Y su dimensión fractal relativa será: 

                  Dimensión fractal relativa = (d + e)/d  (Expresión A).
 
Reactor de fusión ITER
Ahora supongamos que restamos al número de dimensiones topológicas (grados de libertad) un valor igual a e de forma que d se convierte en d - e (nuevo valor de las dimensiones significativas). Entonces, el nuevo valor de la dimensión fractal relativa será (sustituyendo d por d-e):

                 Dimensión fractal relativa = d /(d-e) (Expresión B).   

Hay una diferencia significativa entre la (Expresión A) y la (Expresión B), la primera sólo puede ser positiva pero la segunda puede ser, también, negativa. De hecho, como ejemplo, para el valor de las nuevas dimensiones significativas d igual a e/2, obtenemos que el valor de la Expresión B será -1.


Las expresiones A y B representan la dependencia del fractal (de su magnitud escalar) con la distancia. Como la expresión A siempre es positiva la inestabilidad que representa el fractal cada vez será mayor con la distancia, en cambio la expresión B puede hacerse negativa y eso indica que la inestabilidad, por el contrario, disminuirá con la distancia.



¿En la práctica cómo podemos realizar una reducción de dimensiones? Veremos un ejemplo sumamente sencillo, sólo para esclarecer la cuestión. Imaginemos una tubería cuadrada de (10 cm.) X (10 cm.) por la que circula un flujo de agua. Si de forma gradual disminuimos una de las dimensiones de la tubería y aumentamos la otra (sin variar la sección), podríamos acabar con una tubería, por ejemplo, de (100 cm.) X (1 cm.) Una de las dimensiones, en la práctica y para cierto tipo de fenómenos que se den en espacios mucho mayores de 1 cm, es como si hubiera desaparecido.





 (Nota 1) En sentido estricto no se puede hablar de verdaderas trayectorias, pues no tienen nada que ver con las trayectorias clásicas de los objetos que conocemos.

(Nota 2) B. Mandelbrot :Los objetos fractales. Tusquets Editores, Barcelona, 1987. Ver los primeros conceptos, sobre el cálculo de la dimensión de líneas fractales clásicas. A partir de ese sencillo cálculo se hace evidente