2013/11/18

Geometría fractal del vacío cuántico

Mediante un instrumento matemático sencillo y propiedades
 básicas de las fluctuaciones cuánticas del vacío descubrimos
 su estructura oculta.



A veces lo más sorprendente es lo que ocurre cada día. La transparencia del
vacío, por ejemplo, que todo el mundo da por natural y lógica, puede que no lo
sea tanto. Sobre todo si consideramos las tremendas energías asociadas al
vacío cuántico. A la menor distancia posible,10-35metros, llamada longitud de
Planck, se le asocia una masa del orden de 2x 10-5 gramos. Si mantuviéramos
la misma relación y asignáramos la masa correspondiente a un metro, nos
encontraríamos con la friolera de 1.2 x 1024 toneladas. Pero las fluctuaciones
cuánticas del vacío están acotadas y dependen del inverso de la distancia: esa
es la razón de que observemos el vacío transparente y completamente vacío.
El cuanto de acción es el responsable de la energía asociada al vacío, de sus
fluctuaciones cuánticas. Su extremada pequeñez nos permite ver nuestro
mundo cotidiano con una apariencia continua, como la textura de una película
fotográfica con grano extremadamente fino. Así podemos distinguir entre las
propiedades macroscópicas de la materia, que rigen nuestra vida habitual, y las
microscópicas o cuánticas que determinan el comportamiento del mundo
corpuscular.

Geometría determinada por la energía del vacío
Las fluctuaciones de energía determinan la propia geometría del espacio. No
son simples variaciones sobre un fondo fijo y estable, por lo que analizando su
estructura podremos averiguar algo más sobre la referencia espaciotemporal
que determinan. Por una parte son no diferenciables, hasta el punto de que son la
causa directa de la desaparición del concepto clásico de trayectoria continua en
el vacío. Por otra parte su estructura es auto semejante a cualquier escala:
Si tomamos cualquier distancia mayor que la distancia de Planck, por pequeña
que sea (diámetro atómico, por ejemplo) y cualquier otra distancia de orden
cósmico (diámetro de un cúmulo estelar), a una distancia doble le
corresponderá una energía del vacío mitad, y a una distancia mitad una
energía del vacío doble (inverso de la distancia).
En base a estas simples propiedades consideraremos una hipótesis de trabajo:
que la estructura asociada a la energía del vacío de las fluctuaciones cuánticas
es fractal  y trataremos de estudiar sus características.

Dimensión fractal
La característica más especial de los fractales es su dimensión. Siempre es
positiva y superior a su dimensión topológica. En cierta manera, de forma
intuitiva nos indica la dimensión del espacio que son capaces de ocupar. Una
cuartilla es un ejemplo de objeto de dimensión topológica 2, pero si la
arrugamos conseguimos que ocupe un espacio de mayor dimensión, entre 2 y
3 (normalmente fraccionario). Lo mismo ocurre con una línea (dimensión 1) que
si la hacemos lo suficientemente intrincada e irregular es capaz de ocupar un
plano (dimensión 2) e incluso un espacio (dimensión 3). Si la línea llega a
ocupar el plano su dimensión fractal será 2 y si ocupa el espacio tridimensional,
su dimensión fractal será 3. Conforme mayor sea su dimensión fractal, más
intrincado e irregular será el fractal: a su dimensión topológica se le suma un
coeficiente dimensional que completa el valor de su dimensión. Este
coeficiente, normalmente fraccionario, nos indica el grado de irregularidad del
fractal.

Dependencia espacial en los fractales ...  Leer todo el artículo

2013/10/13

El Big Bang, una explosión en perfecto orden



La curvatura del espacio-tiempo se manifiesta como un efecto marea. Si caemos hacia una gran masa sentiremos que nuestro cuerpo se estira en la dirección de caida y se aplasta en las direcciones perpendiculares a aquella. Esta distorsión de marea aumenta a medida que nos acercamos, de forma que para un cuerpo que caiga a un agujero negro de varias masas solares el efecto lo destrozaría, destrozaría sus moléculas, sus átomos, después, sus núcleos y todas las partículas subatómicas que lo constituyeran. Un verdadero efecto desorganizador, y motor de desorden, de la gravedad en su máximo exponente. No sólo la materia, sino el propio espacio-tiempo encuentran su final en las llamadas singularidades del espacio-tiempo que representan los agujeros negros. Son consecuencias que se deducen de las ecuaciones clásicas de la relatividad general de Einstein y de los teoremas de singularidad de Penrose y Hawking.



Si los agujeros negros son singularidades en donde colapsa la materia y el propio espacio-tiempo, existen otro tipo de singularidades. Utilizando la dirección inversa del tiempo nos encontramos con la singularidad incial en el espacio-tiempo que llamamos Big Bang. Esta singularidad representa todo lo contrario, la creación del espacio-tiempo y de la materia. Aunque podríamos pensar que hay una completa simetría entre los dos fenómenos, cuando los estudiamos con detenimiento encontramos que no pueden ser exactamente inversos en el tiempo. La diferencia entre ellos contiene la clave del origen de la segunda ley de la termodinámica, la famosa ley que dice que :"La cantidad de entropía, o desorden, de cualquier sistema aislado termodinámicamente tiende a incrementarse con el tiempo, hasta alcanzar un valor máximo". También contine la clave de la llamada flecha del tiempo.


La entropía (o medida del desorden) en un agujero negro es elevadísima. De hecho, para hacernos una idea, la compararemos con la entropía que suponíamos que contribuía en mayor manera al total del Universo, la correspondiente a la radiación de fondo. Esta entropía, en unidades naturales, considerando la constante de Boltzman como unidad, es del orden de 108 por cada barión del Universo, mientras que la entropía por barión en el Sol es del orden de la unidad. Mediante la fórmula de Bekenstein-Hawking se encuentra que la entropía por barión en un agujero negro de masa solar (en agujeros más masivos es todavía mayor) es del orden de 1020 en unidades naturales.


Para un Big Crunch, o "crujido" final en que colapsara todo el Universo en un gigantesco agujero negro, la entropía por barión sería del orden de 1031. La existencia de la segunda ley de la termodinámica sería imposible en un universo que emergiera con ese desorbitado desorden,siguiendo una simetría temporal entre singularidades de colapso y de creación. De hecho el Big Bang fue una gran explosión en completo orden. Dio lugar a nuestro espacio-tiempo y a la materia de nuestro Universo y desde entonces ha ido aumentando la entropía, según la segunda ley, y marcando una flecha del tiempo que va desde este inicio al final del Universo.




El orden inicial, tal como apunta Penrose y se comenta en la entrada "las estrellas, fuente de orden y de baja entropía", es el responsable de todo nuestro orden actual y futuro, y de la organización que presentan nuestros organismos vivos.


Hasta tal punto fue ordenada la explosión inicial, que la distorsión destructiva a la que me refería al principio, que tiende a infinito en un agujero negro, fue igual a cero en el Big Bang. Esta distorsión del espacio-tiempo, con conservación de volumen, debida al tensor de curvatura espacio-temporal llamado Weyl, fue nula.


Comentario del autor (18-09-2007):
A diferencia de lo que ocurre en la implosión de la materia para formar un agujero negro, que es un fenómeno capaz de crear cantidades inmensas de entropía (o desorden), en el momento de la "explosión" del Big Bang la entropía fue mínima, de hecho es la única forma en que se puede dar un Universo con la segunda ley de la termodinámica. A partir de entonces la entropía no ha dejado de crecer.
Lo que ocurre es que la "explosión" del Big Bang no lo fue en el sentido que conocemos: algo que estalla en el espacio y en el tiempo, fue el propio "estallido" del espacio-tiempo. Para entenderlo se suele poner el ejemplo de un globo cuando se hincha. Debemos imaginar que la superficie del globo es el propio espacio-tiempo que se ensancha aunque de forma muy violenta, formando el propio espacio-tiempo que conocemos. No hay un centro estático de la explosión, porque todo se aleja de todo, tal como observamos en la expansión actual del Universo.



Reedición del post de fecha 26/09/2007. Un saludo amigos.

2013/09/21

Modulando geométricamente la dimensión y las características espaciales de un fractal. Punto característico.

Geometric modulation of the spatial characteristics of a fractal.


 The relative fractal dimension give us a clearer idea, than simple fractal dimension, the degree of irregularity of fractal and certain spatial features of the same. Moreover, modifying the fractal geometry can achieve vary significantly, its spatial properties.


La dimensión fractal relativa, como veremos, nos da una idea más clara, que la simple dimensión fractal, del grado de irregularidad del fractal y de ciertas características espaciales del mismo. Por otra parte, modificando la geometría del espacio en el que está inmerso el objeto fractal podemos conseguir variar, significativamente, sus propiedades espaciales. Incluso hasta el punto de hacer desaparecer sus características más evidentes como fractal.

Fractal

Dimensión fractal relativa y dependencia espacial de un fractal:
Supongamos una superficie fractal con dimensión D = 2,356.  El valor de la dimensión que excede a 2 nos da una medida de la irregularidad del fractal y la llamaremos ε. Entonces, la dimensión fractal D = δ + ε  (dimensión topológica o aparente más coeficiente dimensional ε). El coeficiente dimensional ε, en cierta forma, nos ofrece una idea de la capacidad del fractal para ocupar parte de la tercera dimensión y, por tanto, del espacio. Podemos tener otro fractal con el mismo valor dimensional y, sin embargo, ser mucho más irregular que el primero: por ejemplo una curva que casi llene el espacio. Puede tener la misma dimensión, pero es mucho más irregular porque su dimensión topológica es 1, a diferencia de la superficie fractal cuya dimensión topológica es 2. Vemos así que la dimensión de un fractal no nos da una idea real de su irregularidad si no la comparamos con su dimensión topológica.

Para variables con dimensión topológica distinta de la unidad es conveniente hablar del cociente D/ δ, que llamaremos dimensión fractal relativa, más que, simplemente, de su dimensión fractal. Reducimos así la dispersión de resultados y encontramos más fácilmente símiles con ejemplos sencillos como trayectorias unidimensionales. Tendremos:

(1)   Dimensión relativa = D/ δ = ( δ + ε ) / δ. Esta expresión nos ayudará a entender cómo se pude modular la dimensión y las características de un fractal modificando la geometría del espacio.

Pero antes nos fijaremos en una propiedad muy interesante que presentan las curvas fractales continuas como son la curva de Koch o el movimiento browniano. Concretando el caso del movimiento browniano, su dimensión es 2 pues es capaz de recubrir una superficie: esto está relacionado con que este movimiento para alejarse N pasos efectivos de cualquier punto arbitrario necesita recorrer N2  pasos totales. Esa capacidad de “vagabundeo” está íntimamente relacionada con la dimensión fractal. Generalizando:
(2)   Distancia efectiva dimens.fractal = Distancia total sobre el fractal.   
      
La expresión de la dimensión fractal relativa, en cierta forma, nos reduce cualquier fractal continuo de dimensión topológica mayor que la unidad a una especie de curva fractal equivalente. Cuanto más isótropo sea el fractal más fiel será la conversión realizada, porque ésta lógicamente no conserva las propiedades direccionales o anisótropas del fractal original. Una vez realizada la conversión podremos aplicar la expresión (2), aunque con mucho cuidado, considerando las características de cada fractal con el que estemos trabajando. Sustituiremos en la expresión (2) la dimensión fractal por la generalización que supone la dimensión fractal relativa.

En el caso de un fractal de dimensión topológica 2, al calcular su dimensión fractal estamos comparando una superficie plana con otra rugosa y de esa comparación extraemos el valor de su dimensión. En el caso de fractales de dimensión topológica 3 o más hacemos algo similar, por lo que en general al dividir la dimensión fractal por la dimensión topológica, para averiguar la dimensión fractal relativa, obviamos el número de dimensiones y volvemos a una  comparación entre magnitudes de una sola dimensión.

Sumando o restando dimensiones:
Dimensiones compactadas
Volviendo a la superficie fractal del comienzo, vemos que el coeficiente dimensional ε se añade a la dimensión topológica. A partir de esta constatación nos podemos hacer la siguiente pregunta: ¿Existe algún fenómeno que represente una resta de dimensiones? Desde luego, si a una superficie la enrollamos a lo largo de una de sus dimensiones hasta convertirla en una línea habremos pasado de un objeto de 2 dimensiones a otro de 1 dimensión, habremos restado una dimensión. En cierta forma, esta operación geométrica representa una resta de dimensiones mientras que la irregularidad de un fractal, expresada por el coeficiente dimensional ε, supone una suma a la dimensión topológica del objeto.

Con todo lo visto hasta ahora vamos a seguir avanzando hacia lo que se puede llamar la modulación geométrica de la dimensión y de las  características espaciales de un fractal. Imaginemos un fractal con dimensión D, dimensión topológica δ  y coeficiente dimensional ε. Si a este fractal aplicamos la transformación T capaz de enrollar o compactar un número de dimensiones ε1, la expresión (1) quedaría:
(3)   Dimensión relativa = ( δ - ε1 + ε ) / (δ - ε1)
Variando el valor ε1 podremos modificar tanto la dimensión del fractal como sus características espaciales. Para ε1= ε tenemos un punto característico que simplifica la expresión (3) dejándola en la forma:
(4)   Dimensión relativa característica = ( δ) / (δ - ε)
Para sistemas sin dimensiones compactadas tendremos la expresión (1) para definir la dimensión fractal relativa y, por tanto, la dependencia espacial del fractal con la distancia. Para sistemas con dimensiones compactadas tenemos la expresión (3).
Supongamos un sistema con dimensión fractal  δ + ε  y del que  conocemos la dependencia del fractal con la distancia que, además sorprendentemente, representa un exponente negativo, supongamos -1. Con estos datos y dado que la dependencia implica un exponente negativo sabemos que existen dimensiones compactadas. Aplicaremos la relación (3) y averiguaremos  ε1.En este caso el valor de ε1 es  (2 δ + ε)/2. Si ese valor fuese igual a ε entonces  estaríamos en el caso de la expresión (4). Para ello δ/2 = ε.

Ejemplo significativo:
 (PhysOrg.com) - Por lo general, pensamos en el espacio-tiempo como cuatro dimensiones, con tres dimensiones espaciales y una dimensión de tiempo. Sin embargo, esta perspectiva euclidiana es sólo uno de las muchas posibles posibilidades  multi-dimensionales de espacio-tiempo. Por ejemplo, la teoría de cuerdas predice la existencia de dimensiones adicionales - seis, siete y hasta 20 o más. Como explican los físicos a menudo, es imposible visualizar estas dimensiones extra, sino que existen principalmente para satisfacer las ecuaciones matemáticas.
Lea más en: "El espacio tiempo puede tener propiedades fractales en una escala cuántica":    http://phys.org/news157203574.html 


Espuma cuántica
         Vacío clásico y vacío cuántico
 

El vacío clásico y continuo es, en cierta forma, como una costa lineal y regular, sin entrantes ni salientes. El vacío cuántico es muy diferente, sus fluctuaciones le confieren una estructura irregular que 
nos puede recordar la estructura fractal de las costas de los países. De “lejos” no es diferente del vacío clásico, pero de “cerca” nos ofrece una visión muy diferente, las fluctuaciones ganan protagonismo porque dependen del inverso de la distancia: a distancia mitad son el doble de intensas. Esta diferencia entre el vacío clásico y el cuántico se puede observar, perfectamente, tratando de seguir las trayectorias de las partículas subatómicas. En el vacío clásico estas están bien definidas y son líneas continuas, en el vacío cuántico no existen como tales, no son propiamente trayectorias pues conforme las tratamos de observar con más detalle, más irregulares aparecen. Son fractales con una dimensión 2. 

                                     ¿Vacío cuántico como un fractal? 


Todo esto hace pensar en la posibilidad de considerar el vacío cuántico como una fractal, en el que la energía de las fluctuaciones cuánticas determinaría su grado de irregularidad, y en base a su valor (un escalar) se podría calcular la dimensión fractal de estas fluctuaciones que conforman todo el espacio. 
Si admitimos esta posibilidad y  aplicamos la expresión (4), dado que la energía de las fluctuaciones del vacío dependen del inverso de la distancia:
Tendremos que, siendo δ = 3, el valor de (δ) / (δ - ε) = -1, luego ε = 6. 

Según esta hipótesis estaríamos en un universo con 6 dimensiones compactadas.

Referencias:

-B.MANDELBROT:Los objetos fractales. Tusquets Editores,Barcelona,1987

-G.COHEN-TANNOUDJI,M.SPIRO:La materia-espacio-tiempo .Espasa-Calpe,Madrid,1988

-S.WEINBERG, “ et al”:Supercuerdas¿Una teoría de todo?. Edición de P.C.W.Davies y
J.Brown.Alianza Editorial,Madrid,1990.

-M.KAKU: Hiperespacio .Crítica (Grijalbo Mondadori) ,Barcelona,1996.

-J. SALVADOR RUIZ FARGUETA: Estabilización cuántica y dimensiones
enrolladas. Nº 23, 2004, Revista Ciencia Abierta, Universidad de Chile.

-J.SALVADOR RUIZ FARGUETA: El sorprendente vacío cuántico. Revista
Elementos (Benemérita Universidad Autónoma de Puebla) nº 53 ,2004,
pp.52-53. ( También en la web: http://www.elementos.buap.mx/num53/htm/52.htm)


2013/08/04

El efecto mariposa, un atractor extraño




El orden lleva asociado un grado importante de predicción, al caos le sucede lo contrario. Los sistemas lineales, representan el orden, son predecibles y cómodos de manejar, de ahí nuestra tendencia a generalizarlos. Ante un sinfín de situaciones generalizamos, proyectamos los datos del presente para tratar de averiguar un comportamiento futuro y casi siempre nos va bien. Pero existen sistemas que se resisten: pequeñas variaciones, incertidumbres, en los datos iniciales desembocan en situaciones finales totalmente descontroladas e impredecibles. Son los llamados sistemas caóticos (En la figura, atractor extraño "poisson_saturne" hecho con el programa Chaoscope).


Para estudiar estos sistemas se requiere de una metodología diferente. Su estudio se realiza en el llamado espacio de fases, un espacio abstracto en el que se representan todas las variables dinámicas del sistema. Por ejemplo, un péndulo simple ideal se vería representado por dos variables, la velocidad y la posición de la masa suspendida. Su representación podría hacerse, por tanto, en el plano y sería una circunferencia. Cada punto de la misma representaría dos cantidades, la velocidad y la posición, en ese momento.


Esa figura en el espacio de fases, a la que se aproxima el fenómeno estudiado, se le llama su atractor. En los sistemas no caóticos el atractor suele ser un punto, una circunferencia, una figura geométrica conocida, pero en los sistemas caóticos presenta una forma “extraña”, de ahí que reciba el nombre de “atractor extraño”, con una dimensión fraccionaria o fractal (En la figura, atractor de Lorenz, en 3D, con el programa Chaoscope).

El primero de éstos fue hallado, por casualidad, por el meteorólogo Edward Lorenz cuando trataba de encontrar un modelo matemático que permitiera predecir el comportamiento de grandes masas de aire. Consiguió ajustar el modelo a sólo tres variables que indican como cambian la velocidad y la temperatura del aire a lo largo del tiempo (atractor de Lorenz).


Después de haber estudiado el modelo, volvió a introducir los datos iniciales - esta vez con menos decimales- y el resultado que obtuvo fue completamente diferente del anterior. Cuando reflexionó sobre los resultados se dio cuenta que el sistema era extremadamente sensible a las condiciones iniciales: pequeñas perturbaciones en los datos de partida tienen una gran influencia sobre el resultado final. Sus ecuaciones captaban la esencia de la verdadera atmósfera. “Aquel primer día (invierno de 1961) decidió que los pronósticos amplios estaban condenados a la extinción”. Pero vio más que azar en su modelo del tiempo: una fina estructura geométrica, orden disfrazado de casualidad.


Para explicar de una manera gráfica – y exagerada - la cuestión se le ocurrió que el simple aleteo de una mariposa, que no se hubiera tenido en cuenta en los datos iniciales, podía modificar una predicción hasta hacerla totalmente inviable después de un determinado tiempo.


Sobre el efecto mariposa se han escrito cientos de artículos, novelas, canciones y se han hecho películas. Recientemente he leído un artículo de Enrique Dans, profesor del Instituto de Empresa, en el que compara el “ecosistema de Internet” con los sistemas no lineales y complejos como el tiempo atmosférico:” Las variables en juego (en Internet) no son tantas: si en el clima hablamos fundamentalmente de velocidad y temperatura del aire, en Internet hablamos de visitas, vínculos y cuestiones afines. Pero el posible impacto de una variación infinitesimal en medición de las variables de origen puede tener un impacto brutal en los resultados finales,...” . “ Criterios que todo el mundo, aparentemente, da por buenos, como el sacrosanto PageRank de Google, la cuenta de vínculos entrantes de una página web que lleva a cabo Technorati o los rankings de popularidad de Alexa son medidas completamente burdas, groseras, carentes de inteligencia, que responden únicamente al deseo e intentar reducir la incertidumbre, pero que lo hacen, en general, bastante mal.”


En este sentido nos encontramos en la era anterior al descubrimiento del efecto mariposa, utilizamos métodos lineales para tratar de analizar los sistemas complejos, no lineales, en donde las realimentaciones de todo tipo, y a todos los niveles, son la propia esencia del sistema. Necesitamos conocer "el atractor extraño de Internet".

Para saber más:"Caos,La creación de una ciencia", de James Gleik. Seix Barral. Barcelona 1988. Un magnífico libro


Nueva edición del post del mismo título de fecha 17/10/2006.

¡¡¡ Feliz verano amigos!!!.

2013/06/23

Polvo fractal con dimensión entera


Como comentaba en el post sobre el “Vacío cuántico, vacío fractal ”,  la existencia del cuanto de acción ha destruido por completo la propia noción de trayectoria clásica.

Laurent Nóttale complementó la definición de Richard Feynman (1965) y A. Hibbs sobre las trayectorias virtuales típicas de una partícula cuántica, indicando que los caminos cuánticos posibles son, en número infinitos, y todos son curvas fractales caracterizadas por una propiedad geométrica común: su dimensión fractal es 2.

En algunos foros he leído que no se entendía bien lo de la dimensión fractal entera, en este caso 2, pero tal como indicaba en la expresión general de la dimensión fractal:

Dimensión fractal = dimensión topológica + factor dimensional


( El factor dimensional, siempre positivo, es tanto mayor cuanto más irregular es el fractal: indica la capacidad de ocupar más espacio del que indica su propia dimensión topológica)

Si el factor dimensional es entero, también lo será la dimensión fractal. Eso es lo que ocurre con las trayectorias virtuales en mecánica cuántica y también en una serie de fractales típicos, como puede ser el fractal del movimiento browniano en un plano (dimensión fractal 2)  o la curva de Peano (dimensión fractal 2) que tiene más de 100 años de existencia.


Si una curva clásica tiene dimensión topológica 1, cuando hablamos de curvas fractales con una dimensión  entre 1 y 2 estamos indicando que son capaces de ocupar parte del plano. Y es precisamente esa capacidad la que viene expresada por el factor dimensional.  En el caso de la curva de Peano o del movimiento browniano, en el límite, ocupan todo el plano, de ahí que su dimensión fractal sea 2 , la propia dimensión del plano.



Como ejemplo, todavía más llamativo, observamos en la figura un fractal clásico
 (el primero que se conoce), el polvo de Cantor que toma toma su nombre de Georg  Cantor  que en 1883 lo utilizó como herramienta de investigación para una de sus principales preocupaciones: el continuo.





A partir de una recta se le van quitando los segmentos centrales hasta conseguir una serie infinita de puntos aislados, de ahí el nombre de polvo. Si restablecemos de forma escalonada  el segmento que antes le quitábamos, el nuevo fractal sigue  teniendo estructura quebrada y autosemejante , pero ahora en lugar de tener una dimensión fractal igual a log 2/ log 3 tiene una dimensión entera: log 3/ log 3 =1. Nos ayuda, también,  a entender como se calcula, de forma práctica, la dimensión fractal de una figura.



Esta otra figura es una síntesis de dos de los fractales clásicos, Koch  y  Cantor, y nos ayuda de forma intuitiva a entender el cálculo de su dimensión fractal. En la figura original de Koch, sobre los segmento A1-B1-D1-E1 se construye  la figura que forman los segmentosA-B-C-D-E. Su dimensión fractal es  log 4/ log 3  ( cuatro segmentos sobre tres). En la nueva construcción se ha sustraido 1/4 de cada uno de los segmentos superiores para dejar 4 segmentos de longitud 3/4: al final son 3 sobre 3 (log 3/ log 3 = 1).

Se pueden construir infinidad de fractales con dimensión entera y, precisamente, esa irregularidad que representa una dimensión fractal entera en un fractal creo que nos ayuda a entendelos mejor.

NOTA: Este post se publicó también en la revista Ciencia Abierta de la Universidad de Chile, en el número 31, sección de Educación, artículo nº 14 de dicha sección. Allí se añadió una parte más sobre la llamada dimensión de Hausdorff-Besicovitch:


En 1975 Benoit Mandelbrot publicó un ensayo titulado” Los objetos fractales: forma, azar y dimensión”. En la introducción comentaba los conceptos de objeto fractal y fractal como términos que había inventado a partir del adjetivo latino “fractus” ( roto, fracturado). Posteriormente, en 1982, publicó el libro “The Fractal Geometry of Nature”, en donde proponía : “Un fractal es, por definición, un conjunto cuya dimensión de Hausdorff-Besicovitch es estrictamente mayor que su dimensión topológica.”

De forma simplificada, esa dimensión tan rara se podría entender de la siguiente manera: Una línea recta de longitud N queda recubierta por un número N de segmentos de longitud unidad. Podemos expresarlo diciendo que longitud_línea = N(+1). Un cuadrado con lado N queda recubierto por N2 pequeños cuadrados de lado la unidad. De forma similar a la línea se puede expresar que superficie_cuadrado = (N)(+2). Sabemos que una línea recta tiene dimensión topológica 1 y una superficie dimensión 2. Para
recubrirlos necesitamos un elemento similar pero más pequeño ND veces (en estos ejemplos de magnitud unidad). En general, el exponente D , generalizado a cualquier objeto, representa la dimensión de Hausdorff-Besicovitch del objeto.

Han sido propuestas otras definiciones y, de hecho, estamos ante un concepto geométrico para el que aún no existe un una definición precisa, ni una teoría única y comúnmente aceptada.

Kenneth Falconer, en su obra titulada “Fractal Geometry: Mathematical Foundations and Applications”, en 1990, describe un concepto de estructura fractal ‘F’ como la que satisface alguna(s) de las propiedades siguientes:
(1).- “F” posee detalle a todas las escalas de observación;
(2).- No es posible describir “F” con Geometría Euclidiana, tanto local
como globalmente;
(3).- “F” posee alguna clase de autosemejanza, posiblemente estadística;
(4).- La dimensión fractal de “F” es mayor que su dimensión topológica;
(5).- El algoritmo que sirve para describir “F” es muy simple, y
posiblemente de carácter recursivo.

En resumen, una técnica análoga a la que los biólogos aplican al concepto de vida.

Cuando observamos un fractal, de hecho, apreciamos algo que nos es familiar, más cercano que las perfectas figuras geométricas clásicas que nos han enseñado en el colegio.

Las ramificaciones de los árboles, las roturas imperfectas de una montaña o una costa, la disposición de la máxima superficie en un mínimo espacio de nuestro tejido pulmonar...

Los fractales nos acercan a la compleja "simplicidad" de la Naturaleza.

2013/06/09

La estabilización del vacío cuántico y las dimensiones enrolladas

La dimensión fractaltal como hemos visto en algunas anotaciones de esta bitácora, está formada por dos sumandosla dimensión aparente o topológica más un factor dimensional tanto mayor cuanto más irregular es el fractal. Este factor aditivo en las fluctuaciones del incipiente Universo podría haber sido contrarrestado por las llamadas dimensiones enrolladas, que en cierta forma suponen una resta dimensional, en el momento en que nuestro Universo adoptó la configuración geométrica de tres dimensiones ordinarias y otras seis compactadas. El resultado pudo ser la propia existencia del cuanto de acción como factor de estabilidad de las fluctuaciones, pues su naturaleza las hace depender del inverso de la distancia permitiendo el vacío cuántico estable que conocemos. ResumiendoEs posible que la configuración geométrica adoptada por nuestro Universo (tres dimensiones ordinarias y seis compactadas) haya sido determinante en la propia naturaleza del cuanto de acción y en la estabilidad del vacío cuántico. De esta cuestión trata el siguiente artículo publicado en la revista Ciencia Abierta (ISSN:0717-8948) de la Universidad de Chile, en el volumen 23, de marzo de 2004.


La existencia del cuanto de acción es la causa de que desaparezca el concepto clásico de trayectoria continua y deba ser sustituido por el de "trayectoria" fractal (discontinua, fracturada). El vacío absoluto y continuo de Newton, como marco estable de referencia, es sustituido por un vacío discontinuo y cambiante, merced a la propia estructura de la energía de sus fluctuaciones cuánticas. Nos encontramos, pues, ante un inmenso fractal, el propio vacío cuántico, modelado por sus fluctuaciones de energía de las que queremos extraer una información preciosa, que nos dará pistas sobre el propio Universo y su formación: su dimensión fractal.

El estudio de un fractal sencillo nos ayudará. En concreto, es interesante fijarnos en el que representa al llamado “movimiento browniano”, descubierto por Robert Brown, un botánico escocés que vivió entre finales del siglo XVIII y primera mitad del XIX. Estudió la flora de Australia y Nueva Zelanda y descubrió el llamado “movimiento browniano” de las partículas coloidales, que ha servido de base para el estudio de la cinética de los gases. Este movimiento browniano tiene mucho que ver con nuestro problema, su dimensión fractal es 2 , el típico de una variable puramente aleatoria que, en cierta forma, sobre un plano (dimensión topológica o aparente 2) sería capaz de recubrirlo.

Para variables con dimensión topológica distinta de la unidad es conveniente hablar del cociente D/ δ (dimensión fractal (D)/ dimensión topológica o aparente (δ) ) más que, simplemente, de su dimensión fractal. Reducimos así la dispersión de resultados y encontramos más fácilmente símiles con ejemplos sencillos como trayectorias unidimensionales. Dicho cociente para el fractal que representa al movimiento browniano será:

(1) D/ δ = ( δ + ε ) / δ = ( 1 +1 ) / 1 =2, donde el sumando positivo ε , que se añade a la dimensión topológica, es la dimensión del factor de arrugamiento y nos da una medida de su irregularidad, de su fractura y “arrugamiento”. En este caso ε = 1 .

La variable que representa el producto acotado:
(2) ( ∆ E ) ( ∆ x )< constante ( principio de incertidumbre, en donde ∆ t se ha sustituido por ∆ x / c ), es del mismo tipo que la relativa al movimiento browniano. El valor de este producto acotado es equivalente al paso que dan las partículas coloidales antes de chocar, puede tener cualquier valor aleatorio aunque acotado, por lo que su cociente D/δ es igualmente 2. Intuitivamente, este valor 2 nos indica que se deben dar n2 pasos para poder alejarse de un punto arbitrario tan sólo n pasos efectivos.

En cierta forma, la dimensión fractal nos da una idea de magnitud encubierta, de compactación. Una trayectoria de dimensión fractal 3 es mucho más intrincada, más compacta que otra de dimensión fractal 2. Si hubiéramos seguido la trayectoria con un hilo ideal muy fino, en el primer caso el diámetro del ovillo resultante sería del orden de la raíz cúbica de la longitud total del hilo utilizado, en el segundo del orden de su raíz cuadrada. Observamos que existe una íntima relación entre la magnitud del ovillo, es decir su dependencia con la distancia, y su dimensión fractal. Cualquier fenómeno que modifique su dependencia con la distancia incidirá directamente en su dimensión fractal y viceversa.

Para nuestro caso, la energía de las fluctuaciones del vacío (la magnitud del “ovillo”) depende del inverso de la distancia, lo que supone un cociente D/δ igual a -1, que resulta completamente irregular e induce a pensar en la existencia de un factor desconocido que está influyendo en el cálculo e introduciendo una distorsión considerable.

El factor negativo, que supone una resta de dimensiones, me hizo pensar en las dimensiones enrolladas previstas por la teoría de supercuerdas, la más prometedora teoría que trata de unificar las cuatro interacciones fundamentales: gravedad, electromagnetismo, fuerza débil y fuerte. Dicha teoría necesita de 9 dimensiones espaciales para ser consistente, y ,dado que sólo conocemos 3, se ha especulado con la existencia de otras 6 que, supuestamente, estarían “enrolladas” sobre si mismas ,compactadas alrededor de un radio extremadamente pequeño (del orden de la longitud de Planck,10-35 metros). Así para distancias mucho mayores que ese radio sólo serían perceptibles las 3 dimensiones ordinarias.

En cierta forma, para esas distancias, el número de dimensiones enrolladas se resta al total de las topológicas para dejar tan sólo 3 dimensiones aparentes. Una operación contraria al efecto de la dimensión del factor de arrugamiento, que se suma a la dimensión topológica.
En la expresión (1) si hallamos el cociente D/δ para un Universo con el mismo número de dimensiones enrolladas que la dimensión del factor de arrugamiento (transformación : δ −> δ − ε) , encontramos:

(3) D/δ = (δ ) / (δ - ε). Para ε = 6 , δ =3, el cociente D/δ toma el valor -1 de forma natural y lógica. Sin dimensiones enrolladas el factor ε = 6 supone una dimensión fractal 9 y una dependencia de la energía de las fluctuaciones con la raíz cúbica de la distancia (D/δ = 3) . El efecto de las dimensiones enrolladas la corrige hasta dejarla dependiente del inverso de la distancia, lo que repercute en la forma en que advertimos el vacío cuántico: completamente vacío y estable.
Para un universo con un número de dimensiones enrolladas (coeficiente dimensional negativo) igual a la dimensión del factor de arrugamiento (coeficiente positivo) de la energía de las fluctuaciones , se consigue la estabilización de esta energía que de otra forma dependería de la raíz cúbica de la distancia y no de su inverso. El vacío y toda la materia que contiene estarían deformados y serían inestables .

La especial geometría formada por las dimensiones ordinarias, las enrolladas y el tiempo permite un vacío cuántico estable que de otra forma haría imposible el Universo tal como lo conocemos, pues la turbulencia creada a todos los niveles impediría cualquier tipo de coherencia. Conforme nos acercamos a las distancias del orden de la longitud de Planck, este efecto estabilizador desaparece y se nos presenta un vacío deformado e inestable.

La transparencia del vacío, tal como la advertimos, puede que sea la mejor prueba de la existencia de las 6 dimensiones enrolladas.
También se puede leer un esbozo de la teoría en la revista Elementos de la Universidad de Puebla.

2013/02/10

Números primos, números de una sola pieza / Prime numbers, one-piece numbers


Entre los números naturales 1, 2, 3 ,4 , 5, 6, 7, ,..., , n, existen unos números especiales que sólo son divisibles por la unidad y por ellos mismos. Estos números son llamados números primos y desde que se conocen han producido una extraña fascinación entre los matemáticos. Existen infinitos, Euclides realizó la primera demostración conocida de su infinitud alrededor del 300 a.C., pero su distribución, aparentemente aleatoria, sigue siendo una incógnita.

En cierta forma, estos números podríamos decir que son "de una pieza", y todos los demás números naturales se pueden construir a partir de ellos mediante un proceso llamado factorización. Los primeros números primos menores de cien son: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89 y 97. Cada uno de ellos sólo se puede escribir como: 2 = 2, 3 = 3,..., 29 = 29,..., 67=67, ..., etc. Mientras que el resto de números naturales necesitan expresarse en función de los números primos: 4 = 2x2, 9 = 3x3, 6 = 3x2, 8 = 2x2x2, ...,30 = 2x3x5, etc.


Se conoce una importante expresión llamada teorema de los números primos que nos da la cantidad de números primos que existen hasta un determinado número. Aproximadamente, para números suficientemente grandes, la expresión es:cantidad de números primos = (número)/Logaritmo Neperiano(número). Aplicando la fórmula para (número)=1000, obtenemos 145 primos, cuando en realidad hay 168. Para 5000 nos acercamos un poquito más, la expresión nos da 587 y en realidad existen 669, y conforme probamos números mayores nos acercamos más, aunque las cifras convergen muy lentamente: para 1000 el 86,3%, para 5000 el 87,7% y para 50000 el 90%.

Lagunas con ausencia de números primos:

Entre 1 y 100 existen 25 números primos, como hemos visto, y en la lista observamos grupos de números compuestos, una especie de lagunas con ausencia de números primos: del 24 al 28 y del 90 al 96. Entre el 100 y el 200 hay 23 primos: 101, 103, 107, 109, 113, 127, 131, 137, 139, 149,151, 157, 163, 167, 173, 179, 181, 191,193, 197, 199. Y encontramos lagunas como la del 182 al 190. Nos podemos preguntar si existen lagunas más grandes entre números primos. A simple vista, parece que no vamos a encontrar ninguna de estas lagunas de forma clara con una suficiente cantidad de números, pero no es así. Podemos encontrar tantas como queramos y de la longitud que deseemos, para ello utilizaremos la siguiente expresión (pueden encontrarse muchas más): n!+2 , desde 2 hasta n. Vamos a ver algunos ejemplos: para n=3, 3!=3x2x1=6; 6+2=8 y 6+3=9. Hemos encontrado la primera laguna formada por el 8 y el 9. Seguimos con n=4: 4!=4x3x2x1=24; 24+2=26, 24+3=27 y 24+4=28. Hemos encontrado tres números compuestos seguidos, pero con esta expresión podemos encontrar cuantos queramos, por ejemplo 101 números seguidos (al menos): 102!+2, 102!+3, 102!+3, ..., 102!+101,102!+102.

¿De cuántas piezas están hechos los números?

Volviendo al título del post, se pueden ver los números compuestos como formados por piezas de números primos. Un número compuesto cualquiera, por ejemplo, el 6 es igual al producto de dos números primos 2x3, podemos considerarlo como formado por dos piezas, la pieza 2 y la pieza 3. En cambio los números primos, como el 7, están formados por sólo una pieza. En un símil musical el número primo podría considerarse como armónico principal y único, y el número compuesto como una composición de armónicos primos que formarían su espectro o descomposición factorial.

Analizando la factorización de un número como producto de números primos, podríamos imaginar que cualquier número está formado por tantas piezas como factores primos lo componen. Se observa como curiosidad que los números del orden de 100 estarían formados, como media, por un producto de 2,7 números primos, los del orden de 1000 por un producto de 2,96 números primos, los de 10000 por un producto de 3,16 números, los de 100000 por 3,3, los de 1000000 por 3,42 y los de 10000000 por 3,64. Observamos que la cantidad de "piezas" necesarias para formar cualquier número aumentan muy lentamente, y ese aumento, además, decrece. Es un tanto asombroso que mientras un número de 3 cifras necesita tres primos para factorizarse (está hecho de tres piezas), uno de 10 cifras sólo necesita cuatro (está hecho de cuatro piezas). Claro que al hablar de piezas estas son tan dispares como el 3 y el 2000003, ambos son números primos.

En un extraño (e imaginario) mundo cuántico formado por números enteros, sería fácil descubrir los números primos. Todos los números compuestos se verían como una borrosa superposición de armónicos primos mientras que los números primos aparecerían claros y estables con una sola configuración fácilmente distinguible. Algo de esto debe le debe ocurrir a Daniel Tammet, un joven autista inglés con una sorprendente capacidad para los números. Cuando piensa en ellos ve formas, colores y texturas que le permiten distinguirlos de una manera asombrosa. Al multiplicar dos números ve dos sombras; al instante aparece una tercera sombra que se corresponde con la respuesta a la pregunta. Cuando piensa en algún número sabe reconocerlo como primo o compuesto. Estuve viendo el reportaje sobre su vida, sus facultades como matemático y su prodigiosa memoria. Sus capacidades son asombrosas. En una semana logró aprender, desde cero, suficiente islandés (un idioma catalogado como muy difícil) para mantener perfectamente una entrevista en la televisión de Islandia.

A alguien le podría parecer que el estudio de los números primos no tiene ninguna utilidad, desde luego se equivoca (ojo, el algoritmo de encriptación RSA nos permite las transacciones fiables). Cualquier saber matemático, por muy absurdo que nos parezca está relacionado con infinidad de campos aparentemente inconexos. Cualquier avance en el conocimiento sobre los números primos, por ejemplo, podría ser decisivo para resolver algún problema del campo más increible que se nos ocurra, tanto matemático como físico. La realidad es conexa y conforme la vamos comprendiendo vemos que el conocimiento que tenemos de ella también lo es.


Una novela sobre investigación de números primos:

Sobre los números primos recuerdo haber leído una novela interesantísima titulada "El tío Petros y la conjetura de Goldbach". La trama discurre a través de las vicisitudes de un matemático obsesionado por comprobar la famosa conjetura de Goldbach sobre los números primos, uno de los problemas abiertos más antiguos en matemáticas. Su enunciado es el siguiente: Todo número par mayor que 2 puede escribirse como suma de dos números primos. Confieso que logró atraparme al igual que le ha pasado a infinidad de lectores. Es muy entretenida y recomendable.

... Mi agradecimiento a la página Descartes, del Ministerio de Educación, que me ha facilitado los cálculos de factorización de grandes números que he necesitado.
... Recomiendo visitar esta magnífica página sobre números primos (en inglés).

Nuestro amigo Tito Eliatron nos envía dos interesantísimos enlaces de su blog a una charla del matemático, Medalla Fields, Terry Tao:Primera parte de la charlasegunda parte. Gracias Tito.