2009/11/18

La medida natural de las cosas

La relación que tratamos de establecer entre dos cantidades puede ser engañosa. En ocasiones los valores más lógicos de las mismas nos alejan de la realidad y del fenómeno que tratamos de estudiar. El sentido común nos puede dar una aproximación del resultado capaz de guiarnos para encontrar la solución correcta, la que se amolda de verdad a la realidad.



Supongamos que queremos relacionar dos cantidades que se corresponden con una realidad palpable, por ejemplo dos longitudes de un determinado objeto, y nos dan las siguientes medidas: 2 y 1/2, 3 y 1/3, 4 y 1/4, ... n y 1/n. Siendo n un número natural. La división entre ellas no nos ofrece ningún conflicto, será 4, 9, 16, ... n2, nos está dando la cantidad de veces que una cantidad es mayor que otra. Sin embargo hay relaciones que pueden dar equívocos si nos dejamos guiar por el resultado puramente matemático. Por ejemplo, si nos fijamos en la figura que representa el fractal clásico llamado copo de Koch y su construcción, vemos que en cada iteración sustituimos un segmento de 3 unidades por cuatro segmentos de una unidad: justamente la relación entre log 4/ log 3 nos da la dimensión fractal de la figura, que es 1.261859… Si lo que queremos relacionar son las dos longitudes representadas por cualquier número natural N y su inverso 1/N, al hallar la relación similar a la anterior, del copo de Koch, nos encontramos con un valor negativo, -1, una dimensión negativa para un fractal, cuando físicamente no tiene ningún sentido, pues la dimensión fractal siempre es igual a la topológica (o dimensión aparente) más un coeficiente dimensional, tanto mayor cuanto más irregular es el fractal.


Matemático y lógico, Kronecker defendía que la aritmética y el análisis deben estar fundados en los números enteros prescindiendo de los irracionales e imaginarios. Fue autor de una frase muy conocida entre los matemáticos: "Dios hizo los naturales; el resto es obra del hombre" (Eric Temple Bell 1986, p.477. Men of Mathematics ).

Esa es la cuestión, en nuestro caso debemos convertir 1/N y N en dos nuevos números naturales que al relacionarnos, para expresar el valor que representa la dimensión del objeto, nos de un resultado coherente con la realidad que estamos observando. Las figuras que siguen a este párrafo nos aclaran el camino a tomar para encontrar una posible solución, para este caso particular.


Vemos la construcción de una figura cuando N=3, N=4 y N=5. En la primera figura si damos el valor 3 al lado, su perímetro será 27 (33), pero si le damos el valor 1/3, su nuevo perímetro será 3. Así ocurre para N=4 ó N=1/4 , etc, y en general para cualquier valor N y 1/N (con N finito, aunque tan grande como queramos). Siempre ocurrirá que si el lado es N el perímetro será N3 y si el lado es 1/N el perímetro será N, sin que para ello varíe la forma de la figura.


La conversión natural será la que transforma la pareja de medidas (1/N, N) en (N, N3) y el valor irregular, -1, que encontrábamos para la dimensión fractal de la curva se convertiría en 3. Este valor le daría a la curva la capacidad de llenar el espacio. Es un fractal con dimensión entera, de forma similar al caso de un movimiento aleatorio puro, que de cada N2 pasos realizado sólo se aleja N, de cualquier punto arbitrario de referencia que consideremos, y por tanto tiene una dimensión fractal igual a 2, capaz de llenar el plano.

En realidad, para nuestro caso (1/N, N), existen infinitas conversiones, responden a la expresión :

Dim. fractal (*)= 1 + 2/logL(N) , siendo L(N) el valor del lado que consideremos, como función de N. Para L(N)= 1/N tenemos el valor -1, para L(N)=N, le corresponde el valor 3, como hemos dicho. Para valores de exponente natural más negativos (1/N2 ) y mayores la dimensión se acerca asintóticamente a l. Para valores mayores de N, como N2, N3, o de mucho mayor exponente el valor asintótico será también 1.

Al final no podemos confiar ciegamente en el valor que nos dan las matemáticas, pues el mundo que representan es mucho más amplio que el mundo real y siempre necesitaremos de nuestro sentido común, en el análisis de los resultados encontrados. Por otra parte, paradójicamente, en ocasiones ocurre lo contrario: el sentido común nos ciega y nos impide ver una realidad más profunda que subyace en los resultados matemáticos.

(*)Tomando logaritmos en base N





Dualidad T, (1/N,N)



Como simple curiosidad, sobre el intercambio de valores 1/N y N, y como culturilla sobre teoría de cuerdas, todo esto puede recordarnos la llamada Dualidad-T:



En la expresión que representa los cuadrados de las energías de las excitaciones de una cuerda en un espacio con una dimensión curvada o compactada, K. Kikkawa y M. Yamanaka en 1984, observaron que la fórmula sigue teniendo el mismo aspecto si hacemos el intercambio R <--> 1/R. Siendo R el radio microscópico de la dimensión que se curva.

Desde un punto de vista físico esto indica que las energías de las excitaciones de una cuerda, cuando hay una dimensión extra de radio R, es la misma que la de una cuerda cuando el radio es 1/R. No ya las energías, sino todas las propiedades físicas de ambos sistemas son exactamente las mismas. Llama la atención, pues cuando R aumenta 1/R decrece, contradiciendo la experiencia de la vida diaria, que nos dice que las cosas pequeñas difieren de las grandes. Para una cuerda ello no es así.


Sobre "Unificación y dualidad en teoría de cuerdas", ver el número de agosto de 1998 de Investigación y Ciencia, de Luis E. Ibáñez Santiago.

2 comentarios:

Anónimo dijo...

Hola salvador!! muy bueno que sigas con el tema de los fractales ami tambien me interesa mucho, y hay temas que todavia no puedo encontrar mucho como fractales heterogeneos, dimension fractal negativa, etc. muy interesante lo de las cuerdas lo viy a investigar,..., con respecto a lo de la dimension fractal de un objeto que tiene todas caracteristicas relacionadas con un unico numero "N": yo calcule la dim. frac. tanto para N y 1/N, como para N y N3, y las dos me dan dim fract=1, capas le estas pifiando algo al calculo fijate, (con todo el respeto), siempre da uno porque la inversa de la proporcion del objeto elemental respecto del objeto contenedor(1/L) es igual a la cantidad de objetos elementales contenidos(N de la ecuacion comun), tu objeto contenedor es el perimetro(asi lo tomas vos) y el objeto elemental el lado, la cuestinon esta en que teniendo en cuenta tu criterio siempre la cantidad de lados es N/(1/N=N2, en un ejemplo y N3/N=N2 en el otro, por eso la dim frac en los dos casos y otros similares es igual a uno......capas, bueno segui con estos temas!!!!, y si podes seguir profundizando en los fractales y las dim enrroll mejor!!!, suerte...
Jman/wilde/bsas/argentina....

Salvador Ruiz Fargueta dijo...

Las figuras que describo las he llamado ovillos, pero no son fractales. sólo las he utilizado para estudiar el cambio que he propuesto. La expresión de la dimensión fractal sólo se puede entender en el sentido de ese cambio. Representa la infinidad de cambios que se pueden realizar.

Un saludo.