Mostrando entradas con la etiqueta Mandelbrot. Mostrar todas las entradas
Mostrando entradas con la etiqueta Mandelbrot. Mostrar todas las entradas

2010/06/02

Fractales, una geometría natural (*)

La geometría tan intuitiva que nos enseñan en la escuela, basada en líneas, puntos y superficies supone, en realidad, un gran esfuerzo de abstracción porque estos elementos idealizados no existen en el mundo cotidiano. Una línea real o una superficie están llenas de irregularidades que pasamos por alto para abstraer su esencia y plasmarla en conceptos más sencillos como recta y plano.


Con los fractales, en cierta manera, deshacemos esa abstracción y nos acercamos un poco más al objeto real. Benoït Mandelbrot utiliza el ejemplo sencillo de un objeto real, como son las costas de los países, para aproximarnos a los fractales. Son líneas quebradas que siguen teniendo un aspecto parecido cuando cambiamos de escala. Precisamente estas dos propiedades son las que definen a un fractal: discontinuidad (rotura, fractura, de ahí su nombre) y autosemejanza con el cambio de escala. Medimos su grado de fractura e irregularidad con un simple número que llamamos dimensión fractal.

Repasando intuitivamente el concepto de dimensión, observamos que un punto no tiene medida (dimensión cero); a una recta la medimos en metros o centímetros lineales, lo que significa asignarle dimensión uno (una sola medida: largo); a una superficie la debemos medir en metros o centímetros cuadrados (dimensión dos: largo por ancho) y a un volumen lo medimos en metros o centímetros cúbicos (dimensión tres: largo por ancho por alto). Un fractal, generalmente, tendrá una dimensión (su dimensión fractal) que estará entre cero y uno, entre uno y dos o entre dos y tres.

Supongamos el caso más sencillo, una recta fractal representada por un hilo arrugado, e imaginemos que tiene dimensión fractal 1,25. Si otro hilo tiene dimensión fractal 1,35, la simple comparación de sus dimensiones fractales supone que este segundo hilo está más arrugado que el primero, presenta más irregularidades. La parte entera de la dimensión fractal (en este caso 1) nos está informando que el objeto con el que tratamos es una recta, la parte fraccionaria nos mide su grado de irregularidad.

La dimensión fractal también da la capacidad que tiene el objeto de ocupar el espacio. El hilo con dimensión fractal 1,35 es capaz de llenar el plano mejor que el de dimensión 1,25. De hecho, si seguimos arrugándolo más aumentaremos su dimensión fractal y cuando esté cercana a 2 habremos conseguido llenar, casi por completo, una superficie con el hilo. Un fractal clásico de este tipo es la llamada curva de Peano.


Los fractales son objetos esencialmente sencillos, se generan fácilmente por ordenador. Mediante muy pocas órdenes de programación, y a partir de un número mínimo de datos, se crean verdaderas maravillas de una riqueza y complejidad extraordinarias. El fractal de Mandelbrot es un ejemplo. Conforme intentamos ampliar, con medios informáticos, cualquiera de sus partes nos encontramos con un nuevo paisaje similar al original pero con nuevos y sorprendentes detalles. Podemos seguir así cuanto deseemos y nos permita la potencia de nuestro ordenador, se nos seguirá mostrando un nuevo mundo fantástico, que nunca llega a repetirse, en cada nueva ampliación. Un mundo surgido casi de la nada, de una sencilla expresión que se encadena y realimenta con nuevos datos.

Como curiosidad, la expresión es así de sencilla: Valor posterior = (valor anterior) 2 + constante (Con una condición restrictiva).

La observación de estos fractales creados por ordenador, nos recuerda siempre a algún objeto natural desconocido pero cercano, posiblemente, porque esa economía de medios para lograr complejidad es una característica muy propia de la Naturaleza. Es la estrategia adoptada para lograr la mejor distribución de los vasos sanguíneos por todo el cuerpo, la disposición óptima del ramaje de los árboles o de los pliegues del cerebro para conseguir la mayor superficie en el mínimo espacio.

Verdaderas maravillas de arte fractal.

(*) De mi colaboración con Libro de Notas, la columna mensual cienciasyletras.

2007/01/02

Diez dimensiones, supercuerdas y fractales.

La teoría de supercuerdas predice que la unificación de todas las fuerzas ocurre a la energía de Planck, o 1016 miles de millones de electronvoltios ( mil billones de veces mayor que las energías de que disponemos en los aceleradores actuales). Esto significa que la verificación experimental de la misma escapa a nuestras posibilidades y a las que nos podría brindar un futuro previsible y supone que la teoría decadimensional ( tres dimensiones ordinarias+ seis compactadas + el tiempo) no es verificable directamente .Sin embargo puede haber alguna forma de verificación indirecta. En muchas universidades los físicos están tratando de diseñar experimentos que nos delaten su presencia, pero es posible que su impronta haya quedado reflejada en la propia naturaleza del cuanto de acción, y las fluctuaciones cuánticas del vacío nos puedan decir algo determinante al respecto.


Benoit Mandelbrot decía que la geometría fractal nos enseña a observar este viejo mundo con unos nuevos ojos. La existencia del cuanto de acción que está íntimamente unida a la propia naturaleza de la energía de las fluctuaciones cuánticas del vacío obliga a que su estructura sea discontinua, escalonada, fractal, por ello la geometría fractal puede enseñarnos algo que antes no podíamos ver.

Mandelbrot, se preguntaba cual era la longitud de una costa y observaba que esa longitud dependía de la unidad de medida que se adoptara para medirla. Si la unidad es de 5 km. la longitud nos da un valor, pero si la unidad es de 100 metros nos encontramos con un resultado mucho mayor, y conforme hacemos más pequeña la unidad de medida nos podremos adaptar mejor a las irregularidades y obtendremos un valor aún mayor. En el caso de una costa fractal ideal, podremos disminuir cuanto queramos la unidad de medida y acabaremos obteniendo un valor infinito.

En las fluctuaciones ocurre algo similar, pero nos encontramos que para una determinada distancia D su valor es del orden de E, mientras que para una distancia 4D será del orden de E/4 y así hasta llegar a distancias muy grandes, por ejemplo 10 000 D, en que la energía implicada es muy pequeña, del orden de E/10 000. Es como si al medir la distancia de costa entre Barcelona y Valencia nos encontráramos que es muchísimo menor que la distancia de costa entre nuestros dos pies cuando paseamos por la playa.

La Universidad de Chile, en su revista Ciencia Abierta , me publicó el artículo “ Estabilización del vacío cuántico y dimensiones enrolladas”, ( después otros dos más completos) sobre la posibilidad de que el estudio de la energía de las fluctuaciones cuánticas del vacío nos estuviera evidenciando, indirectamente, la existencia de las 6 dimensiones enrolladas que necesita la teoría de supercuerdas. Los cálculos parecen indicar que en el estado en que se adoptó la configuración de 3 dimensiones ordinarias y 6 enrolladas, debió decidirse la propia naturaleza del cuanto de acción.

De ser correctos los resultados significarían una evidencia de la existencia de las 10 dimensiones que necesita la teoría de supercuerdas para ser considerada una realidad plena.

Todo parece formar parte, en cierta manera, de una sola realidad: 10 dimensiones, supercuerdas y fractales.

(Por supuesto, quedo a disposición de cualquier universidad interesada en esta línea de investigación)

2006/09/11

Arte fractal



En el reciente Congreso Matemático de Madrid, este pasado mes de agosto, se ha incluido una exhibición de arte fractal. El invitado especial ha sido el profesor Benoit Mandelbrot sin cuyo trabajo no existiría esta brillante rama de las matemáticas modernas ni el arte fractal. Sobran las palabras.

2006/07/26

¿Qué esconde un fractal?

Benoit Mandelbrot se preguntaba, en el libro que dio a conocer sus “nuevas” criaturas ( ver post anterior) que él llamó fractales : ¿ Cuánto mide la costa de Bretaña?. Cualquier libro de geografía nos lo puede aclarar, pero no será una respuesta estrictamente cierta, porque la longitud de una costa dependerá de la unidad de medida con que se mida. Si la medimos con “pasos de hormiga”, medirá mucho más que con “pasos de elefante”. Eso es así porque conforme sea la escala con que la describimos aparecerán más y más detalles e irregularidades que en los fractales matemáticos convierten su longitud total en infinito.

En los fractales reales, que encontramos en la naturaleza, aunque su longitud final no puede llegar a infinito, su magnitud es siempre notablemente superior a la que consideramos. Una costa que “mide” 96 km. ( como ejemplo,un pedazo de costa de la Baja California ), cuando se ha utilizado una unidad de medida de 16 km., puede llegar a medir 120 km., cuando se mide con una “regla” de 8 km.( ver Gerardo G. Naumis de la UNAM).

Esta propiedad es natural en cualquier fractal real, hay una parte de su magnitud que está “escondiendo” y es, precisamente, tanto mayor cuanto más elevada es su dimensión fractal.

El vacío cuántico es una estructura discontinua, fracturada, la mayor estructura fractal que contiene todo lo demás ¿ qué esconde entre sus pliegues? Es posible que esconda la llamada energía oscura, puros pliegues, que como una especie de resorte sería el origen de la aceleración de la expansión del universo.

(Ver post de la estabilización del vacío cuántico y sobre el sorprendente vacío cuántico )

2006/07/20

Fractales, algo de historia.

En 1975 Benoit Mandelbrot publicó un ensayo titulado” Los objetos fractales: forma, azar y dimensión” ( en francés). En la introducción comentaba los conceptos de objeto fractal y fractal como términos que había inventado a partir del adjetivo latino “fractus” ( roto, fracturado). Posteriormente, en 1982, publicó el libro “The Fractal Geometry of Nature”, en donde proponía : “Un fractal es, por definición, un conjunto cuya dimensión de Hausdorff-Besicovitch es estrictamente mayor que su dimensión topológica.”

De forma simplificada, esa dimensión tan rara se podría entender de la siguiente manera: Una línea recta de longitud N queda recubierta por un número N de segmentos de longitud unidad. Podemos expresarlo diciendo que longitud_línea = (N)^(+1) . Un cuadrado con lado N queda recubierto por N^2 pequeños cuadrados de lado la unidad. De forma similar a la línea se puede expresar que superficie_cuadrado = (N)^(+2) . Sabemos que una línea recta tiene dimensión topológica 1 y una superficie dimensión 2. Para recubrirlos necesitamos un elemento similar pero más pequeño n^D veces ( en estos ejemplos de magnitud unidad ). En general, el exponente D , generalizado a cualquier objeto, representa la dimensión de Hausdorff-Besicovitch del objeto.

Han sido propuestas otras definiciones y, de hecho, estamos ante un concepto geométrico para el que aún no existe un una definición precisa, ni una teoría única y comúnmente aceptada.
Kenneth Falconer, en su obra titulada “Fractal Geometry: Mathematical Foundations and Applications”, en1990, describe un concepto de estructura fractal ‘F’ como la que satisface alguna(s) de las propiedades siguientes:

(1).- “F” posee detalle a todas las escalas de observación;
(2).- No es posible describir “F” con Geometría Euclidiana, tanto local como globalmente;
(3).- “F” posee alguna clase de autosemejanza, posiblemente estadística;
(4).- La dimensión fractal de “F” es mayor que su dimensión topológica;
(5).- El algoritmo que sirve para describir “F” es muy simple, y posiblemente de carácter recursivo.

En resumen, una técnica análoga a la que los biólogos aplican al concepto de vida.
Cuando observamos un fractal, de hecho, apreciamos algo que nos es familiar, más cercano que las perfectas figuras geométricas clásicas que nos han enseñado en el colegio.

Las ramificaciones de los árboles, las roturas imperfectas de una montaña o una costa, la disposición de la máxima superficie en un mínimo espacio de nuestro tejido pulmonar...

Los fractales nos acercan a la compleja simplicidad de la Naturaleza.