Mostrando entradas con la etiqueta energía del vacío. Mostrar todas las entradas
Mostrando entradas con la etiqueta energía del vacío. Mostrar todas las entradas

2014/12/30

La sorprendente energía del vacío



Geometría determinada por la energía del vacío

Las fluctuaciones de energía del vacío determinan la propia geometría del espacio. No son simples variaciones sobre un fondo fijo y estable, por lo que analizando su estructura podremos averiguar algo más sobre la referencia espaciotemporal que determinan. Por una parte son no diferenciables, hasta el punto de que son la causa directa de la desaparición del concepto clásico de trayectoria continua en el vacío. Por otra parte su estructura es auto semejante a cualquier escala:
Si tomamos cualquier distancia mayor que la distancia de Planck, por pequeña que sea (diámetro atómico, por ejemplo) y cualquier otra distancia de orden cósmico (diámetro de un cúmulo estelar), a una distancia doble le
corresponderá una energía del vacío mitad, y a una distancia mitad una energía del vacío doble (inverso de la distancia).
En base a estas simples propiedades consideraremos una hipótesis de trabajo:
que la estructura asociada a la energía del vacío de las fluctuaciones cuánticas es fractal  y trataremos de estudiar sus características.

Dimensión fractal

La característica más especial de los fractales es su dimensión. Siempre es positiva y superior a su dimensión topológica. En cierta manera, de forma intuitiva nos indica la dimensión del espacio que son capaces de ocupar. Una cuartilla es un ejemplo de objeto de dimensión topológica 2, pero si la arrugamos conseguimos que ocupe un espacio de mayor dimensión, entre 2 y 3 (normalmente fraccionario). Lo mismo ocurre con una línea (dimensión 1) que si la hacemos lo suficientemente intrincada e irregular es capaz de ocupar un plano (dimensión 2) e incluso un espacio (dimensión 3). Si la línea llega a ocupar el plano su dimensión fractal será 2 y si ocupa el espacio tridimensional, su dimensión fractal será 3. Conforme mayor sea su dimensión fractal, más intrincado e irregular será el fractal: a su dimensión topológica se le suma un coeficiente dimensional que completa el valor de su dimensión. Este coeficiente, normalmente fraccionario, nos indica el grado de irregularidad del fractal.

Dependencia espacial en los fractales   


La líneas fractales gozan de una característica notable con relación a su dependencia espacial: una línea fractal capaz de recubrir el plano, para alejarse de cualquier punto arbitrario una distancia efectiva L debe recorrer una distancia media L2. A otra línea fractal capaz de llenar el espacio le ocurre algo similar: para alejarse de cualquier punto arbitrario una distancia efectiva L, deberá recorrer, como media, una distancia total L3. Es decir, el valor de los exponentes 2 y 3 se corresponde con las dimensiones fractales de las líneas.
Sabiendo la dimensión del fractal podemos calcular su dependencia espacial y a la inversa. Lo que ocurre con las curvas fractales (dimensión topológica 1) lo podemos generalizar a cualquier estructura fractal continua (e isótropa) con mayor dimensión topológica, dividiendo su dimensión fractal por su dimensión topológica.
Reducimos así la dispersión de resultados y encontramos más fácilmente símiles con ejemplos sencillos como trayectorias unidimensionales. A este cociente le llamaremos dimensión fractal relativa:

Dim. frac. relativa = (dimens. topológica + coef. dimensional )/(dimens. topológica).

En nuestro caso conocemos que la energía asociada al vacío depende inversamente de la distancia (L-1). Si fuera una simple línea (dimensión 1) encontraríamos que su dimensión fractal sería -1, pero como la energía es una magnitud tridimensional su dimensión fractal será -3, lo que obedece a un coeficiente dimensional negativo e igual a -6.

Tanto la dimensión fractal como el coeficiente dimensional negativos son resultados anómalos que obedecen a una causa sorprendente que estudiaremos a continuación. Siempre en base a la hipótesis fractal de las fluctuaciones que hemos planteado.


2009/11/05

Lo que esconden los fractales y la energía oscura, una hipótesis

Los fractales esconden bajo sus “arrugas” parte de sí mismos. Suponiendo la hipótesis de un vacío cuántico fractal, la escurridiza energía oscura podría ser la consecuencia de la estructura fractal de las fluctuaciones cuánticas del vacío que conforman todo el espacio.


La medida de la costa de Bretaña
Benoït Mandelbrot se preguntaba cuánto medía la costa de Bretaña, o cualquier costa real que suele ser irregular e intrincada. Un geógrafo se lo habría respondido perfectamente, pero no era esa la repuesta que buscaba Mandelbrot. El geógrafo da por sentado que al medir la costa tiene que hacerlo con unos criterios prácticos determinados, se atiene a ellos, la mide y la registra para siempre en los libros de geografía.

Para Mandelbrot, la pregunta era mucho más transcendente de lo que puede parecer a simple vista, porque se dio cuenta de que la medida dependía de la unidad de medida con la que fuera a efectuarse. Si la mínima unidad de medida a tomar fuera un kilómetro hallaríamos un valor, y si esa mínima unidad fuera el doble encontraríamos un resultado menor. Conforme la unidad utilizada es menor, al efectuar la medida nos acercamos mejor a las irregularidades del terreno y hallamos un valor mayor. Para una costa matemática teórica, de hecho, la unidad de medida la podemos hacer tender a cero tanto como queramos y el resultado obtenido siempre será mayor. En el límite la longitud de cualquier costa teórica es infinita.

Dimensión fraccionaria de una costa
Las costas son ejemplos sencillos de unos objetos matemáticos que Benoït Mandelbrot llamó fractales, porque su estructura es discontinua, rota o fracturada (del latín “fractus”) y mantienen el mismo aspecto a diferentes escalas. A diferencia de los objetos geométricos continuos que conocemos como líneas o planos, los fractales son capaces de “llenar” más espacio del que deberían llenar. Las costas fractales, como líneas que son, deberían tener la capacidad de llenar una dimensión, pero realmente llenan 1.25, 1.30, 1.35… etc. Su dimensión, que es fraccionaria, está entre la línea y el plano, es decir entre 1 y 2, y conforme son más irregulares mayor es su dimensión, a la que llamamos dimensión fractal.



Vacío clásico y vacío cuántico
El vacío clásico y continuo es, en cierta forma, como una costa lineal y regular, sin entrantes ni salientes. El vacío cuántico es muy diferente, sus fluctuaciones le confieren una estructura irregular que nos puede recordar la estructura fractal de las costas de los países. De “lejos” no es diferente del vacío clásico, pero de “cerca” nos ofrece una visión muy diferente, las fluctuaciones ganan protagonismo porque dependen del inverso de la distancia: a distancia mitad son el doble de intensas. Esta diferencia entre el vacío clásico y el cuántico se puede observar, perfectamente, tratando de seguir las trayectorias de las partículas subatómicas. En el vacío clásico estas están bien definidas y son líneas continuas, en el vacío cuántico no existen como tales, no son propiamente trayectorias pues conforme las tratamos de observar con más detalle, más irregulares aparecen. Son fractales con una dimensión 2.

¿Vacío cuántico como un fractal?
Todo esto hace pensar en la posibilidad de considerar el vacío cuántico como una fractal, en el que la energía de las fluctuaciones cuánticas determinaría su grado de irregularidad, y en base a su valor (un escalar) se podría calcular la dimensión fractal de estas fluctuaciones que conforman todo el espacio.

Lo que esconden los fractales y la energía oscura, una hipótesis
Entre dos puntos A y B del espacio euclídeo se puede trazar una recta. La distancia entre los dos puntos siguiendo esta recta es la longitud de la misma. Sin embargo si esa recta la convertimos en una costa fractal real (sin las infinitas irregularidades de una costa fractal matemática), la distancia entre los dos puntos, siguiendo la costa, se puede hacer todo lo grande que se desee dependiendo de la cantidad de irregularidades de la misma.

Si observamos esta línea costera en la distancia, las irregularidades se disimulan y su aspecto se acerca al de una línea mucho más regular. Su distancia aparente también estará cercana a la de la línea recta AB. Sabremos la distancia real AB a través de la costa fractal y la distancia aparente, vista la costa desde lejos. En cierta forma parece que ha desaparecido una parte de la costa, una parte que desde lejos no logramos observar, porque queda escondida entre las irregularidades del fractal.

Si suponemos la hipótesis fractal de las fluctuaciones cuánticas del vacío, ¿la parte escondida por este inmenso fractal podría ser la llamada energía oscura?




En la figura:(representación del vacío
cuántico), los trazos más anchos se corresponden con fermiones (quarks, electrones...) y sus antipartículas, mientras que los trazos más finos corresponden a bosones (gluones, fotones, W+, W-, Z0,...). En lo concerniente al color de los quarks y gluones, se corresponden con la carga de color de los mismos mientras que las partículas insensibles a la interacción fuerte aparecen en blanco o gris.)



Lo que sabemos hasta ahora de la energía oscura
La naturaleza exacta de la energía oscura es una materia de especulación. Se conoce que es muy homogénea, no muy densa y no se conoce la interacción con ninguna de las fuerzas fundamentales más que la gravedad. Como no es muy densa, unos 10−29 g/cm³, es difícil de imaginar experimentos para detectarla en laboratorio. La energía oscura sólo puede tener un profundo impacto en el Universo, ocupando el 70% de toda la energía, debido a que por el contrario llena uniformemente el espacio vacío.

Dos posibles formas de la energía oscura son la constante cosmológica, una densidad de energía constante que llena el espacio en forma homogénea y campos escalares como la quintaesencia: campos dinámicos cuya densidad de energía puede variar en el tiempo y el espacio. De hecho, las contribuciones de los campos escalares que son constantes en el espacio normalmente también se incluyen en la constante cosmológica. Se piensa que la constante cosmológica se origina en la energía del vacío. Los campos escalares que cambian con el espacio son difíciles de distinguir de una constante cosmológica porque los cambios pueden ser extremadamente lentos.
Para distinguir entre ambas se necesitan mediciones muy precisas de la expansión del Universo, para ver si la velocidad de expansión cambia con el tiempo. La tasa de expansión está parametrizada por la ecuación de estado. La medición de la ecuación estado de la energía oscura es uno de los mayores retos de investigación actual de la cosmología física.






2007/03/22

Energía del vacío, ¿estructura fractal?

En 1975 Benoit Mandelbrot publicó un ensayo titulado” Los objetos fractales: forma, azar y dimensión” . En la introducción comentaba los conceptos de objeto fractal y fractal como términos que había inventado a partir del adjetivo latino “fractus” ( roto, fracturado). Posteriormente, en 1982, publicó el libro “The Fractal Geometry of Nature”, en donde proponía : “Un fractal es, por definición, un conjunto cuya dimensión de Hausdorff-Besicovitch es estrictamente mayor que su dimensión topológica.”

Han sido propuestas otras definiciones y, de hecho, estamos ante un concepto geométrico para el que aún no existe un una definición precisa, ni una teoría única y comúnmente aceptada.
Kenneth Falconer, en su obra titulada “Fractal Geometry: Mathematical Foundations and Applications”, en1990, describe un concepto de estructura fractal ‘F’ como la que satisface alguna(s) de las propiedades siguientes:

(1).- “F” posee detalle a todas las escalas de observación;
(2).- No es posible describir “F” con Geometría Euclidiana, tanto local como globalmente;
(3).- “F” posee alguna clase de autosemejanza, posiblemente estadística;
(4).- La dimensión fractal de “F” es mayor que su dimensión topológica;
(5).- El algoritmo que sirve para describir “F” es muy simple, y posiblemente de carácter recursivo.


La energía de las fluctuaciones cuánticas del vacío satisface, prácticamente, todas estas propiedades. Desde distancias astronómicas hasta la longitud de Planck (10-35 metros), conocemos el orden de su valor. Posee autosemejanza, pues para cualquier región del espacio con una longitud característica L su valor depende de una constante ((h*c)/( long.Planck)) y del inverso de L .No es posible describirla con geometría euclidiana, por su discontinuidad intrínseca, al depender de la propia existencia del cuanto de acción de Planck, si bien en distancias macroscópicas los escalones de variación tienden a disminuir con el inverso de dicha distancia (L).El algoritmo que sirve para describirla es muy simple, su valor en cada escala L es siempre del orden: ((h*c) / ( long.Planck)) / (L) .
La energía del vacío determina, para cada valor de L, la estructura general de esa región. Para distancias del orden de la longitud de Planck el espacio está curvado como alrededor de un agujero negro, pero con una estructura que llamamos de espuma cuántica, cuyo detalle desconocemos por no tener todavía una teoría cuántica de la gravedad. Para distancias astronómicas su curvatura es practicamente nula y observamos el vacío trasparente y estable que conocemos. La energía cuántica del vacío es, por todo esto, una magnitud escalar adecuada para el estudio de la estructura general del espacio vacío.

Todo fractal esconde parte de su magnitud. ¿ Puede ser esta propiedad, natural en las estructuras fractales, la respuesta a la llamada energía oscura, causante de la aceleración en la expansión del Universo?

Un fractal muy sencillo nos puede ilustrar lo que digo. Supongamos que queremos calcular la longitud de una costa. Al hacer el primer intento utilizamos como unidad de medida sobre el plano 15 kilómetros y nos salen 6 segmentos. La longitud de la costa sería de 90 km.(15 x 6). En un segundo intento tratamos de afinar más y medimos con una "regla" de 7 Km, encontrando esta vez 15 segmentos y, por tanto, una longitud de costa de 105 Km. (7 x 15). Conforme escojamos la unidad de medida más pequeña, conseguimos adaptarnos mejor a las irregularidades de la costa y encontramos una longitud total mayor. Con la energía del vacío podría pasar algo semejante (sólo semejante, no exactamente igual). En el caso de la costa, suponiendo una medida mínima de longitud, y aplicándola como unidad de medida, resultaría una longitud total de costa mucho mayor que las encontradas: cuando comparamos la medida máxima encontrada con las medidas menores, interpretaríamos que existe parte de la costa escondida ( longitud de costa visible por la medida y longitud de costa escondida u "oscura"). Aunque la comparación no es exacta, podría estar pasando algo similar con la energía oscura.


La geometría fractal puede ser el instrumento adecuado para el estudio de ciertas características fractales de las fluctuaciones cuánticas de la energía del vacío. La información que podamos extraer de ellas podría ayudarnos a entender mejor el comienzo y el final de nuestro Universo.