2019/04/08

La extraña medida cuántica en un espacio de infinitas dimensiones: el espacio de Hilbert


El espacio de Hilbert es una pura construcción matemática pero responde a la perfección a lo que hacía falta para elaborar la teoría cuántica. De no haberse descubierto habría habido que inventarlo para las necesidades de la teoría.

En teoría clásica las cantidades físicas a medir se asocian a simples números, cuyo producto es conmutativo: a*b= b*a . En mecánica cuántica dichas cantidades u observables se asocian a operadores(1) cuyo producto, por el contrario, no es necesariamente conmutativo. Mientras que la física clásica se desarrolla en el espacio ordinario, la mecánica cuántica lo hace en una generalización de este espacio ordinario llamado espacio de Hilbert. Esta generalización permite que operaciones matemáticas intuitivas y fácilmente visualizables en dos y tres dimensiones puedan extenderse a espacios de más dimensiones o, íncluso, a espacios con un número infinito de dimensiones.

Mientras que el espacio ordinario es un espacio vectorial métrico(2), en donde se definen vectores (que podemos identificar como flechitas más o menos largas y orientadas hacia cualquier dirección) como son las fuerzas o las velocidades, en el espacio de Hilbert que tiene infinitas dimensiones los vectores se generalizan como funciones. Las transformaciones que obran sobre los vectores del espacio convirtiéndolos en otros vectores del mismo espacio se llaman operadores(1) . Vectores y operadores tienen propiedades de linealidad: toda combinación lineal, de coeficientes complejos, de vectores es un vector; un operador transforma un vector en otro vector, y toda combinación lineal de vectores, también en un vector. El producto escalar de dos vectores asocia a estos dos vectores un número complejo que depende linealmente de cada uno de ellos. En el espacio ordinario de dos dimensiones si A(a1,a2) y B(b1,b2) son dos vectores, con sus dos coordenadas, el valor a1*b1 + a2*b2 sería el número que expresaría su producto escalar, en base al cual se establece la métrica (2) o la forma de medir en dicho espacio bidimensional.

El formalismo de la teoría cuántica se interesa, por una parte, por los estados del sistema físico y, por otra, por las magnitudes físicas observables relativas a este sistema. Los estados se asocian a los vectores de un espacio de Hilbert y los observables, a los operadores que actúan en este espacio. Un vector del espacio de Hilbert se llama vector propio de un operador cuando la acción de este operador sobre el vector consiste en multiplicarlo por un número llamado propio: (Operador_P) (vector_A) = a0 (vector_A) , siendo a0 el valor propio.

La expresión anterior representa una medida en un sistema cuántico. Al medir el estado del sistema representado por el vector_ A mediante el operador_P hemos encontrado el valor real a0, su valor propio, que corresponde a un observable del sistema representado por el operador. Este observable puede ser una medida de energía, de velocidad, de distancia, etc. El operador más importante de la teoría cuántica es el operador asociado a la energía total del sistema: el hamiltoniano. El total de los valores propios, u observables, del hamiltoniano se llama espectro del sistema. En un sistema atómico, el espectro comprende una serie discreta de valores propios, que se corresponden con los niveles de energía del átomo, nivel fundamental y niveles excitados.

La conmutación y no conmutación de los observables es una de las propiedades más interesantes de la teoría cuántica. Supongamos que dos observables no conmutan, como la posición "q" y el impulso "p", con sus operadores Q y P. Esto significa que no podemos medir el impulso en un estado en que se puede medir la posición, y viceversa. Esta es la expresión rigurosa de la desigualdad de Heisenberg también llamada Principio de Indeterminación.

En la mecánica cuántica una representación de un sistema se define por un conjunto completo de observables que conmutan, y proporciona toda la información susceptible de ser recogida sobre el sistema cuántico.

Lo nuevo respecto a la teoría clásica es que puede haber una segunda representación, es decir, un segundo conjunto completo de observables que conmutan, pero que no conmutan con los de la primera representación. Se dice entonces que las dos representaciones son complementarias. Dependiendo de las magnitudes que midamos (los observables elegidos) tendremos una representación u otra del sistema.

Algo de historia sobre el nacimiento de los espacios de Hilbert:

"¿Quién de nosotros no querría levantar el velo tras el que se esconde el futuro y asomarse, aunque fuera por un instante, a los próximos avances de nuestra ciencia y a los secretos de su desarrollo ulterior en los siglos futuros?".

Así comenzó David Hilbert (1862-1943) su intervención en el Congreso Internacional de Matemáticas celebrado en París en 1900. A continuación planteó 23 problemas que han modelado buena parte del desarrollo de las matemáticas en el siglo XX. Hace 102 años Hilbert era, en contraste con la situación de Einstein durante su annus mirabilis 1905 recién conmemorado, uno de los matemáticos con mayor prestigio y, probablemente, el más influyente.

Por aquellos años, el campo de estudio de Hilbert y sus colaboradores eran las ecuaciones integrales. Los estudiantes de secundaria aprenden que una ecuación es una igualdad entre dos expresiones matemáticas en las que hay un número desconocido, la incógnita, cuyo valor se puede calcular efectuando operaciones. En una ecuación integral la incógnita no es un número, sino una función -una gráfica- cuya fórmula se quiere conocer y que aparece en la ecuación dentro de una integral. En la serie de artículos Fundamentos de una teoría general de las ecuaciones integrales, Hilbert analizó las técnicas introducidas para estudiar estas ecuaciones por Poincaré y Fredholm a finales del XIX, mejorando sus resultados. En el cuarto artículo de esta serie, publicado en 1906, Hilbert prueba que las ecuaciones integrales pueden resolverse como un sistema de infinitas ecuaciones lineales con infinitas incógnitas.

En el bachillerato se estudian los sistemas de tres ecuaciones lineales con tres incógnitas: tres números ligados por las ecuaciones cuyo valor se desea calcular. Estos números se pueden ver como las coordenadas -largo, ancho y alto- de un punto en el espacio, lo que permite usar herramientas geométricas como ángulos y distancias para resolver el sistema. Lo que hizo Hilbert fue construir herramientas geométricas análogas para un espacio, llamado Espacio de Hilbert, en el que los puntos tienen infinitas coordenadas, no sólo las tres cotidianas.



Como curiosidad, sobre la medida del número de partículas en un estado de Fock:
De acuerdo con la mecánica cuántica el número de partículas de un sistema cuántico, en un estado físico totalmente general, no tiene por qué estar bien definido resultando posible al hacer una medida del número de partículas diferentes resultados. Sin embargo, en ciertos casos el sistema puede tener un estado físico peculiar en el que el número de partículas sí esté totalmente bien definido, los estados en los que eso sucede son precisamente los estados de Fock.

Edición de un antiguo post. Un saludo amigos.

2019/01/11

La arruga es bella y ... prefractal

(Desplazamiento sobre un fractal)

Afirmar que la arruga es bella puede tener mucho sentido, en realidad representa toda una revolución,  porque desde siempre se ha considerado lo contrario. Las figuras regulares y planas, lo lineal, eran lo bello desde la geometría clásica de Euclides, pero esa perfección, que supone, sabemos que no es real. En la realidad no hay ninguna línea perfecta, ni  existe ninguna superficie completamente plana.
Wikiperro, Shar Pei
Aunque sabemos que no es real, Imaginemos una superficie perfectamente plana que ocupará exactamente, como sabemos, dos dimensiones y por tanto con dos números la podremos definir: largo por ancho. Si la superficie no es tan plana y tiene “arrugas”, en toda su extensión, en realidad estará ocupando un espacio mayor que las dos dimensiones: ocupará, además, una pequeña parte de la tercera dimensión, la altura. Si ampliáramos cualquier pequeña parte de su superficie y volviéramos a ver otra superficie semejante también arrugada, y  siguiéramos ampliando superficies más y más pequeñas volviendo a observar todavía más, en un proceso de infinitas ampliaciones, estaríamos ante un objeto matemático que Benoît Mandelbrot denominó fractal. En cada una de las ampliaciones volveríamos a ver algo semejante a la primitiva superficie arrugada (autosimilitud).


Pero en la realidad no podemos realizar infinitas ampliaciones de una superficie, porque la materia no es continua sino discreta, y formada por átomos. Después de unas cuantas ampliaciones ya no nos encontraríamos con ninguna superficie sino con algo completamente diferente, una cadena de átomos. Por eso en el mundo real más que de fractales debemos hablar de algo parecido a ellos que llamamos prefractales. Conforme se asemejen más a un fractal matemático (en un mayor número de escalas), más veces los podremos ampliar y conservarán su aspecto primitivo.
Arrugas sobre papel de aluminio 

En cierta forma, podríamos decir que los fractales tienen “arrugas” hasta en sus “mismísimas entrañas” y ello les confiere la propiedad de ocupar un espacio geométrico mayor que el que les corresponde por ser líneas o planos. De hecho, a la superficie  aludida más arriba le corresponde una dimensión dos, pero dependiendo de su grado de irregularidad (rugosidad) a la dimensión dos le tendremos que añadir un coeficiente dimensional, de tal forma que la suma de ambos será su dimensión fractal. Su valor en este caso podría ir de poco más de dos hasta, prácticamente, tres. Una superficie suficientemente “arrugada” e irregular podría tener una dimensión fractal de valor tres, es decir, sería capaz de ocupar un volumen.

Los fractales siempre ocupan un espacio mayor de lo que nos indica su dimensión geométrica, por eso su dimensión fractal siempre es mayor que uno o dos en los casos de líneas o de planos. Y es precisamente su dimensión fractal la que nos indica su grado de irregularidad. En la realidad los objetos fractales se llaman prefractales y dependiendo de su grado de autosimilitud se comportarán de forma más o menos parecida a los fractales matemáticos.


Desplazamiento sobre un fractal, dimensión fractal relativa

El fractal, como hemos comentado, ocupa un espacio mayor que el que nos indica su dimensión topológica. En el caso de la superficie sumamente irregular y arrugada que se ha indicado más arriba vemos que es capaz de ocupar una tercera dimensión, aparte de las dos que le corresponde por ser una superficie. Esta superficie es capaz de tener una dimensión fractal de valor tres, porque ocupa un volumen entero, tres dimensiones.

El cociente "Dimensión fractal/ Dimensión topológica", o dimensión fractal relativa, nos ofrece un valor más significativo que el de la simple dimensión fractal. Una línea fractal también puede "llenar" un volumen y tendrá una dimensión fractal de valor tres pero en este caso su dimensión fractal relativa será de 3/1, es decir 3. En el caso de la superficie arrugada que hemos visto su dimensión fractal relativa será 3/2 que nos indica un valor menor de irregularidad y rugosidad.

La dimensión fractal relativa nos da una información muy valiosa sobre la dependencia espacial del fractal. De hecho, la dimensión fractal relativa 3/2 de la superficie, que hemos indicado, nos dice que para alejarnos n pasos efectivos de un punto arbitrario de la superficie, deberemos efectuar n^(3/2) pasos (ene elevado a tres medios). Mientras que en una superficie lisa y uniforme deberíamos efectuar n pasos, en una superficie rugosa de dimensión fractal 3 sería n elevado a 3/2.

La dimensión fractal relativa nos da una información muy valiosa sobre la dependencia espacial del fractal.

Para entenderlo mejor: paseo sobre el puro azar de un movimiento browniano

La trayectoria caótica de un movimiento browniano tiene una dimensión fractal de valor 2. Eso significa que para alejarnos 10 pasos efectivos de un punto arbitrario deberíamos dar una media de 100 pasos, es decir 10x10 pasos, el cuadrado de 10. Una trayectoria que, al fin y al cabo es una linea, tiene dimensión fractal 2 y es capaz de "llenar" todo un plano (dimensión 2).