Mostrando entradas con la etiqueta Cantor. Mostrar todas las entradas
Mostrando entradas con la etiqueta Cantor. Mostrar todas las entradas

2015/12/26

Cantor, el infinito y más allá


Mi hija Alba cuando tenía cinco años me sorprendía con afirmaciones, aparentemente trascendentes, sobre el infinito y algunas otras cuestiones peliagudas. Recuerdo que un día me dejó perplejo al soltarme a bocajarro: " Papá, el infinito nunca para, siempre se está haciendo". No sé cómo llegó a esa conclusión ni en base a qué, pero en su mente infantil parecía una evidencia pura e incontestable. Después las matemáticas no han sido, precisamente, su fuerte pero aquellas afirmaciones parecían relacionadas con las cuestiones sobre la vida, la muerte o el mundo que parecen preocupar en un momento determinado de la primera infancia a muchos niños. El post sobre los números primos, su infinitud y su "misteriosa" distribución me hizo reflexionar sobre algunos aspectos del infinito que me han hecho recordar esta anécdota y publicar este post.



En la Grecia antigua Platón, Pitágoras y Aristóles entre otros, se planteaban la existencia del infinito y las contradicciones generadas a partir de la aceptación de su existencia. Aristóteles rechazó la idea del infinito dada las contradicciones que generaba. Sin embargo, lo concibió de dos formas diferentes las cuales son las nociones que tenemos actualmente de este concepto: el infinito potencial y el infinito actual. La noción de infinito potencial se centra en la operación reiterativa e ilimitada, es decir, en la recursividad interminable, por muy grande que sea un número natural, siempre podemos concebir uno mayor, y uno mayor que este y así sucesivamente donde esta última expresión "así sucesivamente'' encierra la misma idea de reiteración ilimitada, al infinito. Por otra parte, el infinito actual se refiere al un infinito existente como un todo o unidad y no como un proceso. Kant aceptaba la posición de Aristoteles y rechazaba el infinito actual por ser imposible de ser alcanzado por la experiencia. 

Georg Cantor:
El gran matemático alemán Georg Cantor dedicó gran parte de su vida al estudio del infinito, los distintos infinitos y el llamado continuo, y en el siglo XIX desarrolló la teoría de conjuntos intimamente relacionada con la teoría de números transfinitos. Cantor fundamentó una axiomática consistente que permite construir los conjuntos y posteriormente establecer el concepto de infinito. Para esto definió el concepto de "cardinalidad'' o "potencia'' de un conjunto.Dos conjuntos se dicen que tienen el mismo número de elementos, que tienen la misma cardinalidad o son equipotentes, si existe una función definida entre ellos de forma que a cada elemento de uno sólo le corresponde otro elemento del otro conjunto, y viceversa.



A partir de esta definición se puede establecer la idea de conjunto infinito. Se dice que un conjunto es infinito si existe un subconjunto con la misma cardinalidad o que es equipotente con él. Esta definición plantea una contradicción con la intuición, pues todo subconjunto como parte del conjunto total parece que deba tener menos elementos. Eso es así, efectivamente, en los conjuntos finitos, pero no en los infinitos como podemos observar con un ejemplo sencillo dentro del conjunto de los números naturales. Supongamos que al número natural 100.000.001 le hacemos corresponder el número 1, al 100.000.002 el 2, al 100.000.003 el 3 y así establecemos una correspondencia número a número tan extensa como queramos. Vemos que a cada elemento del subconjunto de números naturales que comienzan con el 100.000.001 le hacemos corresponder un número, y sólo un número del conjunto total de los números naturales, y viceversa.

Cantor se dio cuenta de que existen diferentes grados de infinitud comparando los infinitos de los números naturales N {1,2,3,...n}, racionales Q (fracciones) y reales R(racionales + irracionales). Al cardinal infinito del conjunto de los números naturales le asignó el número llamado Aleph-0 y vio que era del mismo orden que el correspondiente a los números racionales, aunque estos son mucho más densos en la recta. Pero en el caso de los números reales su cardinal transfinito es de mayor orden pues su conjunto no es numerable (no se pueden poner en correspondencia, uno a uno, con los números naturales). A este cardinal le asignó el nombre de Aleph-1 y se supone que R es capaz de llenar la recta por completo, si se admite la hipótesis del continuo (a diferencia de lo que ocurre con los números racionales, los enteros o los naturales).

El descubrimiento de la existencia de cardinales transfinitos supuso un desafío para un espíritu tan religioso como el de Georg Cantor. Y las acusaciones de blasfemia por parte de ciertos colegas envidiosos o que no entendían su trabajo no le ayudaron. Sufrió de depresión, y fue internado repetidas veces en hospitales psiquiátricos. Su mente luchaba contra varias paradojas de la teoría de los conjuntos, que parecían invalidar toda su teoría (hacerla inconsistente o contradictoria, en el sentido de que una cierta propiedad podría ser a la vez cierta y falsa). Trató durante muchos años de probar la hipótesis del continuo, lo que se sabe hoy que es imposible, y que tiene que ser aceptada (o rehusada) como axioma adicional de la teoría, como ocurre con el llamado quinto postulado euclidiano sobre las rectas paralelas. Si se admite tenemos una geometría plana consistente, y si no se admite tenemos nuevas geometrías no planas también consistentes.

Cantor al desarrollar la que él mismo bautizó "aritmética de los números transfinitos", dotó de contenido matemático al concepto de infinito actual. Y al hacerlo así puso los cimientos de la teoría de conjuntos abstractos, contribuyendo además, de forma importante, a fundamentar el cálculo diferencial y el continuo de los números reales. El más notable logro de Cantor consistió en demostrar, con rigor matemático, que la de infinito no era una noción indiferenciada. Sus resultados fueron tan chocantes a la intuición de sus contemporáneos, que el eminente matemático francés Henri Poincaré condenó la teoría de números transfinitos como una "enfermedad", de la que algún día llegarían las matemáticas a curarse.Y Leopold Kronecker, que fue uno de los maestros de Cantor, y miembro preeminente de la matemática institucional alemana, llegó incluso a atacarle directa y personalmente, calificándolo de "charlatán científico", " renegado" y "corruptor de la juventud".

Empezó a interpretar e identificar el infinito absoluto (que no es concebible por la mente humana) con Dios, y escribió artículos religiosos sobre el tema. Murió en una clínica psiquiátrica, aquejado de una enfermedad maníaco-depresiva.Hoy en día, la comunidad matemática reconoce plenamente su trabajo, y admite que significó un salto cualitativo importante en el raciocinio lógico.


Reflexiones:
Lo infinitamente pequeño o lo infinitamente grande, las iteraciones hasta el infinito en límites continuos o en fractales parecen conceptos ajenos a lo cotidiano, pero no es así. En las funciones continuas el cálculo infinitesimal (lo infinitamente pequeño) es una herramienta imprescindible para la ciencia y la tecnología, con ella parece que casi conseguimos tocar el propio infinito. Recuerdo la fascinación que consiguieron ejercer sobre mi mente adolescente los límites infinitos y las sumas infinitas de funciones que se aproximan a una función dada (series de Taylor), así como los cálculos de máximos y mínimos aplicados a cosas cotidianas (como el cálculo del mínimo material con el que construir un cazo de un litro de capacidad). Cuando todos estos cálculos lograban materializarse en algo concreto parecía pura magia.

Toda la revolución cuántica se basa en el cuanto de acción, la mínima acción no puede ser infinitamente pequeña o cero, como suponía la física clásica, y de esa propiedad básica emerge el mundo cuántico y toda su "magia". Por otra parte, se creía infinita la velocidad de la luz, pero de su finitud y de la constatación de que es una magnitud constante, independientemente del sistema de referencia, se ha llegado a la más bella teoría física creada por el hombre: la teoría de la relatividad. En estas dos teorías, en su necesaria conjunción descansa la esperanza de poder desentrañar los secretos más íntimos de la materia y del espacio-tiempo.

Para consultar:
- Revista Números : El infinito en las matemáticas.
-"Dios creó los números, los descubrimientos matemáticos que cambiaron la historia" de Stephen Hawking. Una biografía de los 17 mayores genios matemáticos (entre ellos Cantor) Ed. Crítica. ISBN:978-84-8432-753-0
-Muy interesante y completo, desde varios puntos de vista, el tomo 23 de la Revista Investigación y ciencia (año 2001):"Ideas del infinito".
-Estupenda web (de prueba) de Geocites sobre Cantor y los números transfinitos, por Joseph W. Dauben, de su libro:"George Cantor, Su Filosofía de la matemática y el Infinito" (Cambridge, Mass.: Harvard University Press, 1979; rep. Princeton, NJ: Princeton University Press, 1989).



Felices fiestas y feliz año amigos!!!

2009/12/17

El infinito y más allá, los números transfinitos Aleph

A finales del siglo XIX el original matemático Georg Cantor propuso una bella teoría sobre los números finitos o transfinitos, según la cual el número total de fracciones, números enteros y números naturales son el mismo número transfinito al que llamó Aleph sub-cero.

A primera vista no parece algo razonable, pues se podría pensar que el número de enteros es mayor que el número de naturales, ya que todo número natural es un entero mientras que algunos enteros (los negativos) no son números naturales. De forma similar se podría pensar, también, que el número de fracciones es mayor que el de enteros, pero una cosa es lo que parece y otra lo que es.


La clave está en las extrañas propiedades de los números infinitos y las relaciones que se pueden establecer entre ellos. Para objetos finitos de dos conjuntos diferentes si podemos establecer una "correspondencia uno-a-uno", entre ambos, se puede deducir que tienen el mismo número de elementos. Para un número finito de números naturales ocurre lo mismo, pero lo que es evidente para números finitos deja de serlo para infinitos.

Se puede establecer una correspondencia uno-a-uno entre los números naturales y los números enteros de la siguiente forma: 0(entero)--> 0(natural); -1(entero)--> 1(natural); +1 (entero)--> 2 (natural) y así seguimos indefinidamente con la siguiente tabla:



Cada entero y cada número natural aparecen una y sólo una vez en la tabla. Esta correspondencia entre cada par de números entero-natural es lo que establece en la teoría de Cantor que el número de elementos de la columna de enteros es igual al número de elementos en la columna de naturales. Por consiguiente, el número de enteros es el mismo que el de naturales. De forma similar, aunque algo más complicada, se puede probar que el conjunto de fracciones (racionales) tiene el mismo número de elementos que el conjunto de enteros. El número es infinito, pero no importa, es el mismo número.

El gran matemático David Hilbert se inventó la metáfora del Hotel Infinito para explicar de forma intuitiva las paradojas a las que nos enfrenta la existencia de infinidad de infinitos:

"Había un hotel que tenía infinitas habitaciones. Un día llega un nuevo huésped para alojarse allí, pero el conserje le dice que tenía mala suerte, que estaban todas llenas. El huésped, indignado llama al gerente, y le pregunta cómo era posible en un hotel con infinitas habitaciones. El gerente le da la razón, pero dice que no puede hacer nada, entonces el huésped responde rápidamente: ‘ya se lo que se puede hacer; al que esté en la habitación 1 lo manda a la habitación 2, al de la habitación 2 a la 3 y así sucesivamente, entonces la habitación 1 quedará libre para mi. El gerente
encontró maravillosa esta solución y así lo hizo".


"Algunos días después llega otro huésped y pide de alojarse, a lo que le responden que el hotel estaba lleno, pero que no se preocupara, que sabían cómo solucionarlo. Entonces este huésped dice que había un problema, que él no estaba solo, sino con un grupo de amigos… y que era un grupo infinito. El gerente, otra vez consternado no sabía qué hacer, pero el huésped, también muy hábil le dice que no se preocupe, que mande al de la habitación 1 a la 2, al de la 2 a la 4, al de la 3 a la 6 y así sucesivamente. De esa forma todas las habitaciones con números impares quedarían libres para sus infinitos amigos."

Los conjuntos que pueden ser puestos en correspondencia uno-a-uno con los números naturales se llaman numerables, de modo que los conjuntos infinitos numerables tienen aleph sub-cero elementos.

¡Sorprendentemente, aunque se amplíe el sistema desde los números naturales a los enteros y a los racionales, no incrementamos realmente el número de objetos con los que trabajamos!.

Después todo esto podríamos pensar que todos los conjuntos infinitos son numerables, pero no es así, no sólo hay un tipo de infinito, pues la situación es muy diferente al pasar a los números reales. Cantor demostró mediante el argumento del "corte diagonal" que realmente hay más números reales que racionales. El número de reales es el número transfinito C, de continuo, otro nombre que recibe el sistema de los números reales.

Podríamos pensar en darle a ese número el nombre de aleph sub-uno, por ejemplo. Pero ese nombre representa el siguiente número transfinito mayor que aleph sub-cero y el decidir si efectivamente C = Aleph sub-uno constituye un famoso problema no resuelto, la llamada hipótesis del continuo.

Como curiosidad, ya que estamos hablando de infinitos, el término gugol (en inglés googol) es un número enorme 10100 fue acuñado en 1938 por Milton Sirotta, un niño de 9 años, sobrino del matemático estadounidense Edward Kasner. Kasner anunció el concepto en su libro Las matemáticas y la imaginación. Isaac Asimov dijo en una ocasión al respecto: "Tendremos que padecer eternamente un número inventado por un bebé".

El gúgol no es de particular importancia en las matemáticas y tampoco tiene usos prácticos. Kastner lo creó para ilustrar la diferencia entre un número inimaginablemente grande y el infinito, y a veces es usado de esta manera en la enseñanza de las matemáticas. El motor de búsqueda de google fue llamado así debido a este número. Los fundadores originales iban a llamarlo Googol, pero terminaron con Google debido a un error de ortografía de Larry Page, uno de los fundadores de Google.

2009/01/15

Cantor, el infinito y más allá

Mi hija Alba cuando tenía cinco años me sorprendía con afirmaciones, aparentemente trascendentes, sobre el infinito y algunas otras cuestiones peliagudas. Recuerdo que un día me dejó perplejo al soltarme a bocajarro: " Papá, el infinito nunca para, siempre se está haciendo". No sé cómo llegó a esa conclusión ni en base a qué, pero en su mente infantil parecía una evidencia pura e incontestable. Después las matemáticas no han sido, precisamente, su fuerte pero aquellas afirmaciones parecían relacionadas con las cuestiones sobre la vida, la muerte o el mundo que parecen preocupar en un momento determinado de la primera infancia a muchos niños. El post sobre los números primos, su infinitud y su "misteriosa" distribución me hizo reflexionar sobre algunos aspectos del infinito que me han hecho recordar esta anécdota y publicar este post.


En la Grecia antigua Platón, Pitágoras y Aristóles entre otros, se planteaban la existencia del infinito y las contradicciones generadas a partir de la aceptación de su existencia. Aristóteles rechazó la idea del infinito dada las contradicciones que generaba. Sin embargo, lo concibió de dos formas diferentes las cuales son las nociones que tenemos actualmente de este concepto: el infinito potencial y el infinito actual. La noción de infinito potencial se centra en la operación reiterativa e ilimitada, es decir, en la recursividad interminable, por muy grande que sea un número natural, siempre podemos concebir uno mayor, y uno mayor que este y así sucesivamente donde esta última expresión "así sucesivamente'' encierra la misma idea de reiteración ilimitada, al infinito. Por otra parte, el infinito actual se refiere al un infinito existente como un todo o unidad y no como un proceso. Kant aceptaba la posición de Aristoteles y rechazaba el infinito actual por ser imposible de ser alcanzado por la experiencia.

Georg Cantor:
El gran matemático alemán Georg Cantor dedicó gran parte de su vida al estudio del infinito, los distintos infinitos y el llamado continuo, y en el siglo XIX desarrolló la teoría de conjuntos intimamente relacionada con la teoría de números transfinitos. Cantor fundamentó una axiomática consistente que permite construir los conjuntos y posteriormente establecer el concepto de infinito. Para esto definió el concepto de "cardinalidad'' o "potencia'' de un conjunto.Dos conjuntos se dicen que tienen el mismo número de elementos, que tienen la misma cardinalidad o son equipotentes, si existe una función definida entre ellos de forma que a cada elemento de uno sólo le corresponde otro elemento del otro conjunto, y viceversa.



A partir de esta definición se puede establecer la idea de conjunto infinito. Se dice que un conjunto es infinito si existe un subconjunto con la misma cardinalidad o que es equipotente con él. Esta definición plantea una contradicción con la intuición, pues todo subconjunto como parte del conjunto total parece que deba tener menos elementos. Eso es así, efectivamente, en los conjuntos finitos, pero no en los infinitos como podemos observar con un ejemplo sencillo dentro del conjunto de los números naturales. Supongamos que al número natural 100.000.001 le hacemos corresponder el número 1, al 100.000.002 el 2, al 100.000.003 el 3 y así establecemos una correspondencia número a número tan extensa como queramos. Vemos que a cada elemento del subconjunto de números naturales que comienzan con el 100.000.001 le hacemos corresponder un número, y sólo un número del conjunto total de los números naturales, y viceversa.

Cantor se dio cuenta de que existen diferentes grados de infinitud comparando los infinitos de los números naturales N {1,2,3,...n}, racionales Q (fracciones) y reales R(racionales + irracionales). Al cardinal infinito del conjunto de los números naturales le asignó el número llamado Aleph-0 y vio que era del mismo orden que el correspondiente a los números racionales, aunque estos son mucho más densos en la recta. Pero en el caso de los números reales su cardinal transfinito es de mayor orden pues su conjunto no es numerable (no se pueden poner en correspondencia, uno a uno, con los números naturales). A este cardinal le asignó el nombre de Aleph-1 y se supone que R es capaz de llenar la recta por completo, si se admite la hipótesis del continuo (a diferencia de lo que ocurre con los números racionales, los enteros o los naturales).

El descubrimiento de la existencia de cardinales transfinitos supuso un desafío para un espíritu tan religioso como el de Georg Cantor. Y las acusaciones de blasfemia por parte de ciertos colegas envidiosos o que no entendían su trabajo no le ayudaron. Sufrió de depresión, y fue internado repetidas veces en hospitales psiquiátricos. Su mente luchaba contra varias paradojas de la teoría de los conjuntos, que parecían invalidar toda su teoría (hacerla inconsistente o contradictoria, en el sentido de que una cierta propiedad podría ser a la vez cierta y falsa). Trató durante muchos años de probar la hipótesis del continuo, lo que se sabe hoy que es imposible, y que tiene que ser aceptada (o rehusada) como axioma adicional de la teoría, como ocurre con el llamado quinto postulado euclidiano sobre las rectas paralelas. Si se admite tenemos una geometría plana consistente, y si no se admite tenemos nuevas geometrías no planas también consistentes.

Cantor al desarrollar la que él mismo bautizó "aritmética de los números transfinitos", dotó de contenido matemático al concepto de infinito actual. Y al hacerlo así puso los cimientos de la teoría de conjuntos abstractos, contribuyendo además, de forma importante, a fundamentar el cálculo diferencial y el continuo de los números reales. El más notable logro de Cantor consistió en demostrar, con rigor matemático, que la de infinito no era una noción indiferenciada. Sus resultados fueron tan chocantes a la intuición de sus contemporáneos, que el eminente matemático francés Henri Poincaré condenó la teoría de números transfinitos como una "enfermedad", de la que algún día llegarían las matemáticas a curarse.Y Leopold Kronecker, que fue uno de los maestros de Cantor, y miembro preeminente de la matemática institucional alemana, llegó incluso a atacarle directa y personalmente, calificándolo de "charlatán científico", " renegado" y "corruptor de la juventud".

Empezó a interpretar e identificar el infinito absoluto (que no es concebible por la mente humana) con Dios, y escribió artículos religiosos sobre el tema. Murió en una clínica psiquiátrica, aquejado de una enfermedad maníaco-depresiva.Hoy en día, la comunidad matemática reconoce plenamente su trabajo, y admite que significó un salto cualitativo importante en el raciocinio lógico.

Reflexiones:
Lo infinitamente pequeño o lo infinitamente grande, las iteraciones hasta el infinito en límites continuos o en fractales parecen conceptos ajenos a lo cotidiano, pero no es así. En las funciones continuas el cálculo infinitesimal (lo infinitamente pequeño) es una herramienta imprescindible para la ciencia y la tecnología, con ella parece que casi conseguimos tocar el propio infinito. Recuerdo la fascinación que consiguieron ejercer sobre mi mente adolescente los límites infinitos y las sumas infinitas de funciones que se aproximan a una función dada (series de Taylor), así como los cálculos de máximos y mínimos aplicados a cosas cotidianas (como el cálculo del mínimo material con el que construir un cazo de un litro de capacidad). Cuando todos estos cálculos lograban materializarse en algo concreto parecía pura magia.

Toda la revolución cuántica se basa en el cuanto de acción, la mínima acción no puede ser infinitamente pequeña o cero, como suponía la física clásica, y de esa propiedad básica emerge el mundo cuántico y toda su "magia". Por otra parte, se creía infinita la velocidad de la luz, pero de su finitud y de la constatación de que es una magnitud constante, independientemente del sistema de referencia, se ha llegado a la más bella teoría física creada por el hombre: la teoría de la relatividad. En estas dos teorías, en su necesaria conjunción descansa la esperanza de poder desentrañar los secretos más intimos de la materia y del espacio-tiempo.

Para consultar:
-Revista Mundo de las Matemáticas del Instituto Tecnológico de Costa Rica.
-"Dios creó los números, los descubrimientos matemáticos que cambiaron la historia" de Stephen Hawking. Una biografía de los 17 mayores genios matemáticos (entre ellos Cantor) Ed. Crítica. ISBN:978-84-8432-753-0
-Muy interesante y completo, desde varios puntos de vista, el tomo 23 de la Revista Investigación y ciencia (año 2001):"Ideas del infinito".
-Estupenda web (de prueba) de Geocites sobre Cantor y los números transfinitos, por Joseph W. Dauben, de su libro:"George Cantor, Su Filosofía de la matemática y el Infinito" (Cambridge, Mass.: Harvard University Press, 1979; rep. Princeton, NJ: Princeton University Press, 1989).

2006/11/03

Polvo fractal con dimensión entera

Como comentaba en el post sobre el “Vacío cuántico, vacío fractal ”, la existencia del cuanto de acción ha destruido por completo la propia noción de trayectoria clásica.
Laurent Nóttale complementó la definición de Richard Feynman (1965) y A. Hibbs sobre las trayectorias virtuales típicas de una partícula cuántica, indicando que los caminos cuánticos posibles son, en número infinitos, y todos son curvas fractales caracterizadas por una propiedad geométrica común: su dimensión fractal es 2.

En algunos foros he leído que no se entendía bien lo de la dimensión fractal entera, en este caso 2, pero tal como indicaba en la expresión general de la dimensión fractal:

Dimensión fractal = dimensión topológica + factor dimensional

( El factor dimensional, siempre positivo, es tanto mayor cuanto más irregular es el fractal: indica la capacidad de ocupar más espacio del que indica su propia dimensión topológica)


Si el factor dimensional es entero, también lo será la dimensión fractal. Eso es lo que ocurre con las trayectorias virtuales en mecánica cuántica y también en una serie de fractales típicos, como puede ser el fractal del movimiento browniano en un plano ( dimensión fractal 2) o la curva de Peano ( dimensión fractal 2) que tiene más de 100 años de existencia.


Si una curva clásica tiene dimensión topológica 1, cuando hablamos de curvas fractales con una dimensión entre 1 y 2 estamos indicando que son capaces de ocupar parte del plano. Y es precisamente esa capacidad la que viene expresada por el factor dimensional. En el caso de la curva de Peano o del movimiento browniano, en el límite, ocupan todo el plano, de ahí que su dimensión fractal sea 2 , la propia dimensión del plano.


Como ejemplo, todavía más llamativo, observamos en la figura un fractal clásico ( el primero que se conoce), el polvo de Cantor que toma toma su nombre de Georg Cantor que en 1883 lo utilizó como herramienta de investigación para una de sus principales preocupaciones: el continuo.






A partir de una recta se le van quitando los segmentos centrales hasta conseguir una serie infinita de puntos aislados, de ahí el nombre de polvo. Si restablecemos de forma escalonada el segmento que antes le quitábamos, el nuevo fractal sigue teniendo estructura quebrada y autosemejante , pero ahora en lugar de tener una dimensión fractal igual a log 2/ log 3 tiene una dimensión entera: log 3/ log 3 =1. Nos ayuda, también, a entender como se calcula, de forma práctica, la dimensión fractal de una figura.


Esta otra figura es una síntesis de dos de los fractales clásicos, Koch y Cantor, y nos ayuda de forma intuitiva a entender el cálculo de su dimensión fractal. En la figura original de Koch, sobre los segmento A1-B1-D1-E1 se construye la figura que forman los segmentosA-B-C-D-E. Su dimensión fractal es log 4/ log 3 ( cuatro segmentos sobre tres). En la nueva construcción se ha sustraido 1/4 de cada uno de los segmentos superiores para dejar 4 segmentos de longitud 3/4: al final son 3 sobre 3 ( log 3/ log 3 = 1).

Se pueden construir infinidad de fractales con dimensión entera y, precisamente, esa irregularidad que representa una dimensión fractal entera en un fractal creo que nos ayuda a entendelos mejor.