Mostrando entradas con la etiqueta fractal. Mostrar todas las entradas
Mostrando entradas con la etiqueta fractal. Mostrar todas las entradas

2012/05/09

Fractales contra dimensiones enrolladas, una "oposición" geométrica



Arrugar, romper o fracturar la continuidad clásica para aumentar la capacidad de un objeto de ocupar espacio, o enrollarlo para disminuir dicha capacidad. He aquí la cuestión, aparentemente trivial, que puede llevarnos a entender mejor el propio nacimiento de nuestro Universo.


Geometría fractal. La geometría sobre puntos, rectas, planos y demás objetos geométricos que se nos enseña en la escuela no es más que una abstracción, muy útil, sobre objetos reales de nuestra vida cotidiana. Cualquier superficie de la vida real, por muy perfecta que nos parezca nunca es un plano geométrico perfecto. Conforme la observemos con más y más aumento repararemos en un montón de imperfecciones que la van alejando de la geometría euclidea que nos han enseñado y la acercan, cada vez más, a una nueva geometría más cercana a la realidad que llamamos geometría fractal.


Imaginemos que en un espacio de tres dimensiones nos encontramos con una especie de diablillo virtual moviéndose con total libertad y tratando de recubrirlo por completo. Su trayectoria será una línea quebrada, con infinidad de recovecos, cuyo fin será pasar por todos los puntos del espacio. Como línea de trayectoria que es su dimensión topológica será la unidad, pero su capacidad de recubrir el espacio nos indica que estamos ante un objeto geométrico diferente a los típicos objetos euclidianos que hemos estudiado en la escuela, como el punto, la línea o el plano de dimensiones cero, uno o dos. Este tipo de objetos es lo que Benoît Mandelbrot llamaba en 1975 objetos fractales, concepto que había inventado a partir del adjetivo latino “fractus” (roto, fracturado). Posteriormente, en 1982, publicó el libro “The Fractal Geometry of Nature”, en donde proponía : “Un fractal es, por definición, un conjunto cuya dimensión de Hausdorff-Besicovitch es estrictamente mayor que su dimensión topológica.”


Dimensión fractal. La dimensión que define la trayectoria del diablillo ya no es la dimensión clásica de una línea (la unidad), sino que a ella debemos añadir un coeficiente dimensional que nos indica su grado de irregularidad.La suma de los dos coeficientes nos da un nuevo valor dimensional al que llamamos dimensión fractal. En este caso hacemos la siguiente suma: dimensión geométrica clásica (1) + coeficiente dimensional (2) = dimensión fractal (3).


Dependencia con la distancia. Hay un detalle más que nos da una idea del movimiento que lleva el diablillo. La distancia total que recorre al cabo de N de sus pasos debe ser sólo la raíz cúbica de su alejamiento efectivo a un punto arbitrario, es decir para alejarse una distancia efectiva d, de un punto cualquiera, su recorrido total deberá ser d 3. Este exponente (3) nos está dando, también, la dimensión fractal del movimiento. En cierta forma es lógico que sea así, pues el volumen que intersecta y recubre la trayectoria es del orden del cubo de su distancia característica (Volumen = Lado3).


¿Que tiene que ver todo esto con las dimensiones enrolladas? Supongamos una manguera vista desde una distancia de doscientos metros. A todos los efectos prácticos sólo vemos una línea y una sola dimensión característica, su longitud. Un objeto tridimensional, aunque con dos dimensiones significativas en el orden práctico se ha convertido en una linea unidimensional. Mejor aún, para poder visualizar más fácilmente la "oposición" geométrica a la que se refiere el título del post, imaginemos una lámina superfina (despreciamos su espesor) de un material moldeable. Cuando la lámina está perfectamente extendida, y sin arrugas, tenemos un objeto geométrico con dos dimensiones. Si la arrugamos y comprimimos convenientemente hasta conseguir una bola tendremos un objeto con tres dimensiones significativas, por lo que habremos aumentado en una su dimensión inicial. Si, por el contrario, la enrollamos perfectamente hasta formar un tubo muy fino obtendremos un objeto unidimensional, una línea, y habremos disminuido en una su dimensión inicial. En cierta forma vemos que realizamos operaciones opuestas, geométricamente hablando. Una suma dimensiones (fractalizar) y la otra resta (enrollar).


¿Tiene algún sentido práctico todo esto? Puede tenerlo, y mucho. Siempre de forma hipotética, de forma casual me di cuenta de que en un universo emergente esta simple cuestión geométrica pudo tener mucho que ver en la estabilidad que presenta el vacío cuántico. Para un vacío cuántico cuyas fluctuaciones de energía fueran un fractal de dimensión (3 + 6), unas supuestas dimensiones enrolladas que nos dejaran un espacio de (9 - 6) dimensiones (6 enrolladas) contribuirián decisivamente a su estabilidad. En el momento clave en que debían quedar definidas las constantes típicas de este universo (la propia naturaleza del cuanto), las supuestas dimensiones enrolladas pudieron tener un papel primordial, puramente geométrico, en su definitiva fijación. (Ver en la Revista Elementos de la Universidad autónoma de Puebla, un esbozo de esta teoría)

Reedición de un interesante post de 2009. Espero que os guste amigos. Un abrazo.

2008/08/30

Diez dimensiones, supercuerdas y fractales

Uno de los post más visitados el año pasado, con casi 6.000 visitas, fue este que vuelvo a publicar. Espero que a los nuevos visitantes os guste y a los más antiguos también. En este post se supone la hipótesis fractal para la energía de las fluctuaciones cuánticas.

Al respecto es importante repasar el concepto de estructura fractal de Kenneth Falconer en su obra titulada “Fractal Geometry: Mathematical Foundations and Applications”, en 1990. En ella describe un concepto de estructura fractal ‘F’ como la que satisface alguna(s) de las propiedades siguientes:

(1).- “F” posee detalle a todas las escalas de observación;
(2).- No es posible describir “F” con Geometría Euclidiana, tanto local como globalmente;
(3).- “F” posee alguna clase de autosemejanza, posiblemente estadística;
(4).- La dimensión fractal de “F” es mayor que su dimensión topológica;
(5).- El algoritmo que sirve para describir “F” es muy simple, y posiblemente de carácter recursivo.

Según este concepto, la energía de las fluctuaciones cuánticas del vacío tendría estructura fractal. A continuación seguimos con el post que vuelvo a publicar:


La teoría de supercuerdas predice que la unificación de todas las fuerzas ocurre a la energía de Planck, o 1016 miles de millones de electronvoltios ( mil billones de veces mayor que las energías de que disponemos en los aceleradores actuales). Esto significa que la verificación experimental de la misma escapa a nuestras posibilidades y a las que nos podría brindar un futuro previsible y supone que la teoría decadimensional ( tres dimensiones ordinarias+ seis compactadas + el tiempo) no es verificable directamente .Sin embargo puede haber alguna forma de verificación indirecta. En muchas universidades los físicos están tratando de diseñar experimentos que nos delaten su presencia, pero es posible que su impronta haya quedado reflejada en la propia naturaleza del cuanto de acción, y las fluctuaciones cuánticas del vacío nos puedan decir algo determinante al respecto.



Benoit Mandelbrot decía que la geometría fractal nos enseña a observar este viejo mundo con unos nuevos ojos. La existencia del cuanto de acción que está íntimamente unida a la propia naturaleza de la energía de las fluctuaciones cuánticas del vacío obliga a que su estructura sea discontinua, escalonada, fractal, por ello la geometría fractal puede enseñarnos algo que antes no podíamos ver.

Mandelbrot, se preguntaba cual era la longitud de una costa y observaba que esa longitud dependía de la unidad de medida que se adoptara para medirla. Si la unidad es de 5 km. la longitud nos da un valor, pero si la unidad es de 100 metros nos encontramos con un resultado mucho mayor, y conforme hacemos más pequeña la unidad de medida nos podremos adaptar mejor a las irregularidades y obtendremos un valor aún mayor. En el caso de una costa fractal ideal, podremos disminuir cuanto queramos la unidad de medida y acabaremos obteniendo un valor infinito.

En las fluctuaciones ocurre algo similar, pero nos encontramos que para una determinada distancia D su valor es del orden de E, mientras que para una distancia 4D será del orden de E/4 y así hasta llegar a distancias muy grandes, por ejemplo 10 000 D, en que la energía implicada es muy pequeña, del orden de E/10 000. Es como si al medir la distancia de costa entre Barcelona y Valencia nos encontráramos que es muchísimo menor que la distancia de costa entre nuestros dos pies cuando paseamos por la playa.

La Universidad de Chile (2004), en su revista Ciencia Abierta , me publicó el artículo “ Estabilización del vacío cuántico y dimensiones enrolladas”, ( después otros dos más completos) sobre la posibilidad de que el estudio de la energía de las fluctuaciones cuánticas del vacío nos estuviera evidenciando, indirectamente, la existencia de las 6 dimensiones enrolladas que necesita la teoría de supercuerdas. Los cálculos parecen indicar que en el estado en que se adoptó la configuración de 3 dimensiones ordinarias y 6 enrolladas, debió decidirse la propia naturaleza del cuanto de acción.

De ser correctos los resultados significarían una evidencia de la existencia de las 10 dimensiones que necesita la teoría de supercuerdas para ser considerada una realidad plena.

Todo parece formar parte, en cierta manera, de una sola realidad: 10 dimensiones, supercuerdas y fractales.

2006/10/17

El efecto mariposa, un atractor extraño


El orden lleva asociado un grado importante de predicción, al caos le sucede lo contrario. Los sistemas lineales, representan el orden, son predecibles y cómodos de manejar, de ahí nuestra tendencia a generalizarlos. Ante un sinfín de situaciones generalizamos, proyectamos los datos del presente para tratar de averiguar un comportamiento futuro y casi siempre nos va bien. Pero existen sistemas que se resisten: pequeñas variaciones, incertidumbres, en los datos iniciales desembocan en situaciones finales totalmente descontroladas e impredecibles. Son los llamados sistemas caóticos ( En la figura, atractor extraño "poisson_saturne" hecho con el programa Chaoscope).


Para estudiar estos sistemas se requiere de una metodología diferente. Su estudio se realiza en el llamado espacio de fases, un espacio abstracto en el que se representan todas las variables dinámicas del sistema. Por ejemplo, un péndulo simple ideal se vería representado por dos variables, la velocidad y la posición de la masa suspendida. Su representación podría hacerse, por tanto, en el plano y sería una circunferencia. Cada punto de la misma representaría dos cantidades, la velocidad y la posición, en ese momento.


Esa figura en el espacio de fases, a la que se aproxima el fenómeno estudiado, se le llama su atractor. En los sistemas no caóticos el atractor suele ser un punto, una circunferencia, una figura geométrica conocida, pero en los sistemas caóticos presenta una forma “extraña”, de ahí que reciba el nombre de “atractor extraño”, con una dimensión fraccionaria o fractal ( En la figura, atractor de Lorenz, en 3D, con el programa Chaoscope).

El primero de éstos fue hallado, por casualidad, por el meteorólogo Edward Lorenz cuando trataba de encontrar un modelo matemático que permitiera predecir el comportamiento de grandes masas de aire. Consiguió ajustar el modelo a sólo tres variables que indican como cambian la velocidad y la temperatura del aire a lo largo del tiempo (atractor de Lorenz).


Después de haber estudiado el modelo, volvió a introducir los datos iniciales - esta vez con menos decimales- y el resultado que obtuvo fue completamente diferente del anterior. Cuando reflexionó sobre los resultados se dio cuenta que el sistema era extremadamente sensible a las condiciones iniciales: pequeñas perturbaciones en los datos de partida tienen una gran influencia sobre el resultado final. Sus ecuaciones captaban la esencia de la verdadera atmósfera. “Aquel primer día ( invierno de 1961) decidió que los pronósticos amplios estaban condenados a la extinción”. Pero vio más que azar en su modelo del tiempo: una fina estructura geométrica, orden disfrazado de casualidad.


Para explicar de una manera gráfica – y exagerada - la cuestión se le ocurrió que el simple aleteo de una mariposa, que no se hubiera tenido en cuenta en los datos iniciales, podía modificar una predicción hasta hacerla totalmente inviable después de un determinado tiempo.


Sobre el efecto mariposa se han escrito cientos de artículos, novelas, canciones y se han hecho películas. Recientemente he leído un artículo de Enrique Dans, profesor del Instituto de Empresa, en el que compara el “ecosistema de Internet” con los sistemas no lineales y complejos como el tiempo atmosférico:” Las variables en juego ( en Internet) no son tantas: si en el clima hablamos fundamentalmente de velocidad y temperatura del aire, en Internet hablamos de visitas, vínculos y cuestiones afines. Pero el posible impacto de una variación infinitesimal en medición de las variables de origen puede tener un impacto brutal en los resultados finales,...” . “ Criterios que todo el mundo, aparentemente, da por buenos, como el sacrosanto PageRank de Google, la cuenta de vínculos entrantes de una página web que lleva a cabo Technorati o los rankings de popularidad de Alexa son medidas completamente burdas, groseras, carentes de inteligencia, que responden únicamente al deseo e intentar reducir la incertidumbre, pero que lo hacen, en general, bastante mal.”


En este sentido nos encontramos en la era anterior al descubrimiento del efecto mariposa, utilizamos métodos lineales para tratar de analizar los sistemas complejos, no lineales, en donde las realimentaciones de todo tipo, y a todos los niveles, son la propia esencia del sistema. Necesitamos conocer "el atractor extraño de Internet".

Para saber más:"Caos,La creación de una ciencia", de James Gleik. Seix Barral. Barcelona 1988. Un magnífico libro