Mostrando entradas con la etiqueta energía de las fluctuaciones del vacío. Mostrar todas las entradas
Mostrando entradas con la etiqueta energía de las fluctuaciones del vacío. Mostrar todas las entradas

2016/09/26

Fractales, física clásica y nuevas teorías (II)


¿La energía de las fluctuaciones cuánticas del vacío tiene estructura prefractal? (**Nota**)
Detrás de esta sencilla hipótesis quizás podamos encontrar seis dimensiones compactadas y el origen de la energía oscura.

Como se comentaba en la anterior entrada, en la naturaleza observamos una geometría diferente a la euclidea, mucho más cercana a la que el matemático Benoît Mandelbrot llamó geometría fractal. Aunque en ella, lógicamente, el fractal puramente matemático no se puede dar pues su estructura no se puede repetir en un número infinito de escalas. Por esa razón se llama prefractal, es decir fractal en un número finito de escalas.


Concepto de estructura fractal
Fractal natural (prefractal)
Con los fractales, estamos ante un concepto geométrico para el que aún no existe un una definición precisa, ni una teoría única y comúnmente aceptada.
Kenneth Falconer, en su obra titulada “Fractal Geometry: Mathematical Foundations and Applications”, en1990, describe un concepto de estructura fractal ‘F’ como la que satisface alguna(s) de las propiedades siguientes:

(1).- “F” posee detalle a todas las escalas de observación;
(2).- No es posible describir “F” con Geometría Euclidiana, tanto local como globalmente;
(3).- “F” posee alguna clase de autosemejanza, posiblemente estadística;
(4).- La dimensión fractal de “F” es mayor que su dimensión topológica;
(5).- El algoritmo que sirve para describir “F” es muy simple, y posiblemente de carácter recursivo.

En resumen, una técnica análoga a la que los biólogos aplican al concepto de vida.

La curva de Koch
Los fractales  más sencillos, como la curva de Koch, nos enseñan lo fundamental de su esencia. En este  caso su característica más importante, su dimensión fractal, resulta de una relación entre dos cantidades escalares. En cada nueva iteración un segmento de medida tres es sustituido por otros cuatro segmentos de medida la unidad, tal como aparece en la figura. La relación (log 4)/(log 3) = 1,261859 … nos da la dimensión fractal de esa curva y determina su forma a todas las escalas.




En el vacío, la existencia del cuanto de acción, que está íntimamente unida a la propia naturaleza de la energía de las fluctuaciones cuánticas, obliga a que su estructura sea discontinua, escalonada, fractal (prefractal), lejos de la continuidad clásica (Esta es una hipótesis de la que se parte: Estructura fractal de la energía de las fluctuaciones cuánticas del vacío. El planteamiento es mucho más particular que el que representa la relatividad de escala de Laurent Nóttale). Hasta el punto de que las trayectorias de las partículas, electrones, protones, átomos, etc, ha dejado de ser una verdadera trayectoria para convertirse en curvas fractales de dimensión 2 (Laurent Nóttale complementó la definición de Richard Feynman (1965) y A. Hibbs sobre las trayectorias virtuales típicas de una partícula cuántica, indicando que los caminos cuánticos posibles son, en número infinitos, y todos son curvas fractales caracterizadas por una propiedad geométrica común: su dimensión fractal es 2). Por  ello la geometría fractal puede enseñarnos algo que antes no podíamos ver.




Energía del vacío y curva de Koch
Las fluctuaciones cuánticas de energía del vacío no son simples variaciones sobre un fondo absoluto y estático, determinan la propia geometría del espacio, por lo que analizando su estructura podremos averiguar algo más sobre la referencia espaciotemporal que determinan. La forma en que se puede proceder a analizarlas es idéntica a como se determina la dimensión fractal de una costa o cualquier figura fractal sencilla como la curva de Koch. La pauta que nos guía, en nuestro caso, es la variación de la energía virtual de las fluctuaciones con la distancia. Desde distancias astronómicas hasta la longitud de Planck la energía asociada está siempre en proporción inversa a dicha distancia: si para una distancia D se le asocia una energía E, para una distancia 2D se le asocia una energía E/2.





En las curvas fractales analizamos la relación existente entre los segmentos característicos (escalares) que definen su construcción, en el vacío cuántico debemos tomar una relación entre dos magnitudes escalares capaces de definir la forma del espacio. Esas magnitudes que varían con la escala son los diferentes valores que toma la energía del vacío según como se mida. En la curva de Koch encontrábamos un valor 3 si mediamos la distancia AE en una dimensión (línea recta) y otro valor 4 si la mediamos en dos dimensiones, ABCDE.





Suponiendo una hipótesis fractal para la energía de las fluctuaciones cuánticas del vacío

Podríamos tener algo similar:

Entre dos puntos arbitrarios A y E, en tres dimensiones, la energía de las fluctuaciones tendría un valor relacionado con el inverso de la distancia, entre dichos puntos. En nueve dimensiones (propuesta teoría de cuerdas) su valor estaría relacionado en proporción directa a la distancia (lo que se corresponde con el valor encontrado para la densidad de la energía oscura).





(Para seguir paso a paso el desarrollo de la hipótesis, sin hacer demasiado pesado el post, se puede visitar la página Mi_ciencia_abierta y de forma más sencilla el artículo de la revista Elementos, de la Universidad de Puebla, El sorprendente vacío cuántico)






Gravedad cuántica de bucles
Generalizando los resultados obtenidos, en base a ciertas aproximaciones y a las hipótesis de las que se parte, se puede llegar a los siguientes resultados:


A pesar de lo intrincadas e irregulares que son las fluctuaciones cuánticas su dependencia con el inverso de la distancia permite al vacío cuántico que se nos presente de forma, prácticamente, similar al vacío clásico a pesar de las tremendas energías a las que se encuentra asociado. En este efecto tuvo mucho que ver la particular geometría que, hipotéticamente,  adoptó nuestro Universo: 3 dimensiones espaciales ordinarias y 6 compactadas. Esta geometría y la propia naturaleza del cuanto de acción están íntimamente ligadas. Con otra geometría diferente las reglas de la mecánica cuántica en nuestro universo serían completamente diferentes.



La estabilidad del espacio-tiempo, de la materia y de la energía tal como los conocemos sería imposible y, a la postre, tampoco sería posible la belleza que esta estabilidad posibilita así como la propia inteligencia y armonía que, en cierta forma, subyace en todo el Universo.





En cierta forma, la malla que constituye el espacio-tiempo que supone la teoría llamada gravedad cuántica de bucles, en primera aproximación, estaría conformada por la energía de las fluctuaciones. Las nueve dimensiones espaciales de la teoría de cuerdas, admitiendo la hipótesis fractal de las fluctuaciones, configurarían esa dualidad de energías del vacío: en nuestro mundo tridimensional la energía del vacío depende del inverso de la distancia, en las nueve dimensiones (seis de ellas compactadas) daría lo que llamamos energía oscura, capaz de acelerar la expansión del universo.








(**Nota**) Un fractal matemático observa la misma estructura en infinitas escalas. En la naturaleza no se puede hablar de auto semejanza en infinitas escalas por lo que en lugar de  fractal se utiliza el término prefractal. En el caso de la energía cuántica del vacío estaríamos hablando de más de 50 órdenes de magnitud en el recorrido de las escalas, lo que supone un caso extraordinario en la naturaleza.

2016/03/02

Las dimensiones extras. ¿Podemos demostrar que existen dimensiones enrolladas?


LHC

Según la teoría de supercuerdas en nuestro mundo existirían nada menos que 10 dimensiones, una dimensión temporal y  9 dimensiones espaciales. De estas dimensiones espaciales 3 serian las dimensiones ordinarias, que conocemos, y las otras 6 estarían enrolladas sobre sí mismas, alrededor de una distancia mínima llamada distancia de Planck, por lo que no serian observables.

Se han diseñado experimentos para tratar de descubrirlas en base a resultados anómalos sobre la atracción gravitatoria de masas a distancias microscópicas o  en  la violación de la conservación de la energía en colisiones en los aceleradores de partículas. También existe la posibilidad de que los mapas, cada vez más detallados, de la energía cósmica liberada en el Big Bang nos indiquen la huella de las dimensiones extras.

Pero puede que exista otra posibilidad de demostrar la existencia de dimensiones extra. Vamos a estudiar un curioso fenómeno que se da en sistemas fractales con un número grande de dimensiones. Partiendo de la hipótesis de que la energía de las fluctuaciones cuánticas del vacío tienen una estructura fractal, este fenómeno nos presentaría las dimensiones extra de una forma natural.

LHC

La dimensión fractal

La característica más especial de los fractales es su dimensión. Siempre es positiva y superior a su dimensión topológica. En cierta manera, de forma intuitiva nos indica la dimensión del espacio que son capaces de ocupar. Una cuartilla es un ejemplo de objeto de dimensión topológica 2, pero si la
arrugamos conseguimos que ocupe un espacio de mayor dimensión, entre 2 y 3 (normalmente fraccionario). Lo mismo ocurre con una línea (dimensión 1) que si la hacemos lo suficientemente intrincada e irregular es capaz de ocupar un plano (dimensión 2) e incluso un espacio (dimensión 3). Si la línea llega a ocupar el plano su dimensión fractal será 2 y si ocupa el espacio tridimensional, su dimensión fractal será 3. Conforme mayor sea su dimensión fractal, más intrincado e irregular será el fractal: a su dimensión topológica se le suma un coeficiente dimensional que completa el valor de su dimensión. Este coeficiente, normalmente fraccionario, nos indica el grado de irregularidad del fractal.
Dimensiones enrolladas
Dependencia espacial en los fractales

La líneas fractales gozan de una característica notable con relación a su dependencia espacial: una línea fractal capaz de recubrir el plano, para alejarse de cualquier punto arbitrario una distancia efectiva L debe recorrer una distancia media L2. A otra línea fractal capaz de llenar el espacio le ocurre algo similar: para alejarse de cualquier punto arbitrario una distancia efectiva L, deberá recorrer, como media, una distancia total L3. Es decir, el valor de los exponentes 2 y 3 se corresponde con las dimensiones fractales de las líneas.
Sabiendo la dimensión del fractal podemos calcular su dependencia espacial y a la inversa. Lo que ocurre con las curvas fractales (dimensión topológica 1) lo podemos generalizar a cualquier estructura fractal con mayor dimensión topológica (siempre que sea continua y razonablemente isótropa), dividiendo su dimensión fractal por su dimensión topológica.
Reducimos así la dispersión de resultados y encontramos más fácilmente símiles con ejemplos sencillos como trayectorias unidimensionales. A este cociente le llamaremos dimensión fractal relativa:

Dim. frac. relativa = (dimens. topológica+ coef. dimensional )/(dimens. topológica).
                                                     Dfr= (d+e)/d

En nuestro caso conocemos que la energía asociada al vacío depende inversamente de la distancia (L-1). Si fuera una simple línea (dimensión 1) encontraríamos que su dimensión fractal sería -1, pero como la energía es una magnitud tridimensional su dimensión fractal será -3, lo que obedece a un coeficiente dimensional negativo e igual a -6.

Tanto la dimensión fractal como el coeficiente dimensional negativos son resultados anómalos que obedecen a una causa sorprendente que estudiaremos a continuación. Siempre en base a la hipótesis fractal de las fluctuaciones que hemos planteado.
Volvamos a fijarnos en una simple hoja de papel que supondremos de espesor despreciable. Si la arrugamos estamos “fabricando” un fractal con dimensión mayor de 2 y menor de 3, es decir estamos sumando a su dimensión topológica un factor dimensional tanto mayor cuanto más intrincado sea su arrugamiento. ¿Pero qué ocurre si sobre la hoja lisa, sin arrugar, realizamos la operación de enrollarla sobre uno de sus extremos de la forma más fina posible?: A su dimensión topológica 2 le habremos restado una de sus dimensiones. En cierta forma, estamos realizando una operación con resultados opuestos al arrugamiento. En un caso se suma un factor dimensional y en el otro se resta.
Si sobre la expresión de la dimensión fractal relativa aplicamos la siguiente transformación de resta de dimensiones, que llamaremos T:

T: Valor (dimens. topológica) --> Valor (dimens. topológica – coef. dimensional),
                                                  T: (d) --> (d-e)

obtenemos la siguiente expresión para un universo con el mismo valor de dimensiones enrolladas que de coeficiente dimensional:


Dim. fractal relativa = (dimens. topológica)/(dimens. topológica – coef. dimensional).
                                                     Dfr= d/(d-e)

Si a esta expresión le igualamos el valor (-1) encontramos que el resultado anómalo obtenido se correspondería al de un universo con 6 dimensiones enrolladas y con un factor dimensional, también, de 6 (d= dimensión topológica=3).


Un poco más sobre el tema, visto de otra forma.