Mostrando entradas con la etiqueta entropía. Mostrar todas las entradas
Mostrando entradas con la etiqueta entropía. Mostrar todas las entradas

2023/07/19

Estructuras disipativas, método científico y entropía (I.A. dependencia del entorno)

 De la interacción con nuestro entorno intercambiamos materia y obtenemos energía y conocimiento en bruto que después convertimos en ciencia y tecnología. La vida, los ecosistemas y, en cierta forma, las propias sociedades humanas son un tipo especial de estructuras llamadas disipativas que obtienen orden (disminuyen su entropía) a costa del entorno. Son estructuras abiertas que aumentan su información útil a partir de la información exterior. En el límite, este fenómeno es el que lleva a la ciencia a confirmar con experimentos la veracidad de sus teorías y a cualquier inteligencia "natural o artificial" a escalar su conocimiento científico o tecnológico. Una supuesta inteligencia artificial superpoderosa tendría que buscar nuevo conocimiento en su entorno, al igual que nosotros, de lo contrario su tenología no avanzaría.

Estructuras disipativas
En el equilibrio o cerca de él, no se produce nada interesante, todo es lineal. Cuando pueden ocurrir cosas sorprendentes es lejos del equilibrio: si llevamos un sistema lo bastante lejos del equilibrio, entra en un estado inestable con relación a las perturbaciones en un punto llamado de bifurcación. A partir de entonces la evolución del sistema está determinada por la primera fluctuación, al azar, que se produzca y que conduzca al sistema a un nuevo estado estable. Una fluctuación origina una modificación local de la microestructura que, si los mecanismos reguladores resultan inadecuados, modifica la macroestructura. Lejos del equilibrio, la materia se autoorganiza de forma sorprendente y pueden aparecer espontáneamente nuevas estructuras y tipos de organización que se denominan estructuras disipativas. Aparece un nuevo tipo de orden llamado orden por fluctuaciones : si las fluctuaciones del ambiente aumentan fuera de límite, el sistema, incapaz de disipar entropía a ese ambiente, puede a veces "escapar hacia un orden superior" emergiendo como sistema más evolucionado.

En estos nuevos tipos de estructuras y orden se basan la vida, la organización de un termitero, los ecosistemas y las propias organizaciones y sociedades humanas. Pero lo más importante es que este nuevo orden en el que el determinismo y el azar se llevan de la mano si que es un universal. Estas estructuras, al igual que la vida no aparecen y progresan por pura casualidad o accidente como se creía.


El método científico como límite del intercambio de información con el entorno.
Como comentaba en el post anterior, nuestros genes transportan una información preciosa conseguida del entorno a través de millones de años de intercambio y evolución. Nacemos, casi, como una hoja de papel en blanco, y a partir de entonces seguimos aprendiendo de nuestro exterior. De nuestros padres, de las demás personas y seres, del comportamiento de los otros, de todo lo que nos pasa y de la información que nos llega. Lo externo, como un todo, nos hace como somos. A la ciencia como estructura, en cierta forma le pasa igual. A través del método científico necesita, para avanzar, contrastar las teorías mediante experimentos que confirmarán o no su adecuación a la realidad. En ese sentido desde la menor prueba al mayor de los experimentos, son la forma de interactuar con el entorno para ganar en orden, información y complejidad. Experimentos tan formidables como los que se están realizando, o se realizarán, con el LHC nos permitirán confirmar un montón de teorías y suposiciones, o nos ayudarán a concebir otras nuevas, que seguirán cambiando nuestra sociedad y a nosotros mismos en un baile sin fin en la escala de la complejidad.


Y en ese curioso "baile", incluso si llega a ocurrir lo que se ha llegado a denominar "La singularidad" (singularidad tecnológica), la aparición de los ordenadores ultralistos (máquinas "más inteligentes que los seres humanos") como cuenta el artículo de 1993 escrito por el ingeniero informático y escritor de ciencia ficción Vernor Vinge, en el que sostiene que la aceleración del progreso tecnológico nos ha llevado "al borde de un cambio comparable a la aparición de la vida humana en la Tierra", la esencia no cambiará. En el hipotético futuro en el que las supermáquinas inteligentes o cualquier supercivilización nos supere, seguirá necesitando de su entorno para aprender y aprender cada vez más, seguirán necesitando contrastar sus hipótesis con la realidad y confrontando su tecnología con esa misma realidad.

Reflexiones: multiversos, espespacio-tiempo, mito
¿Hasta cuando? Hay un límite, nuestro universo no es infinito y su final será la llamada muerte térmica, la uniformidad total de la que ya no se podrá extraer ni energía ni información, el estado de máxima entropía y máximo desorden. Aunque haciendo una suposición más de ciencia ficción que de ciencia, antes de llegar a esto es de suponer que alguna de las civilizaciones más avanzadas habrá aprendido todo lo que se puede aprender sobre las leyes físicas de este universo, y podría tener una tecnología capaz de llevarla a otros universos en estados menos degradados (suponiendo que vivimos en un multiverso).


Entre todo esto, una reflexión más: seguimos suponiendo el espacio y el tiempo como el contenedor fundamental de todo lo que es y acontece en el universo (multiverso), pero las dos teorías física más formidables con las que contamos, la relatividad general y la mecánica cuántica y sobre todo su incipiente fusión a la que llamamos gravedad cuántica, nos cuentan que ni el espacio ni el tiempo son las entidades fundamentales que creemos sino que dimanan de otra puramente cuántica subyacente. El universo, el nuestro, tuvo un principio, pero ¿ el multiverso si existe tuvo un principio o siempre estuvo ahí? Es más, ¿tiene sentido seguir hablando en términos de tiempo y espacio, tal como los conocemos, sabiendo que hay alguna entidad cuántica más fundamental de la que emanan?

Primero fue el mito para explicar la realidad que no entendíamos, le han seguido la filosofía y la ciencia, y conforme avanzamos con ella nos va adentrando en un mundo que cada vez nos parece más mítico y menos real. Caminamos como un ciego que sólo cuenta con su inteligencia y su metódico bastón científico, y vivimos tiempos de grandes cambios que, espero, pronto (1) nos darán una nueva bella teoría sobre gravedad cuántica que nos ayude a entender mejor este mundo y a nosotros mismos. Un abrazo.

(1) Soy muy optimista.
La primera figura (estructuras disipativas) está tomada del estupendo blog "Hombres que corren con lobos"

Un amigo nos comenta sobre el interesantísimo cuento de Isaac Asimov:" La última pregunta". Os lo recomiendo.
Reedición del post del mismo nombre de 2016. Un abrazo amigos.

2016/12/19

Estructuras disipativas, método científico y entropía



De la interacción con nuestro entorno intercambiamos materia y obtenemos energía y conocimiento en bruto que después convertimos en ciencia y tecnología. La vida, los ecosistemas y, en cierta forma, las propias sociedades humanas son un tipo especial de estructuras llamadas disipativas que obtienen orden (disminuyen su entropía) a costa del entorno. Son estructuras abiertas que aumentan su información útil a partir de la información exterior. En el límite, este fenómeno es el que lleva a la ciencia a confirmar con experimentos la veracidad de sus teorías


Estructuras disipativas
En el equilibrio o cerca de él, no se produce nada interesante, todo es lineal. Cuando pueden ocurrir cosas sorprendentes es lejos del equilibrio: si llevamos un sistema lo bastante lejos del equilibrio, entra en un estado inestable con relación a las perturbaciones en un punto llamado de bifurcación. A partir de entonces la evolución del sistema está determinada por la primera fluctuación, al azar, que se produzca y que conduzca al sistema a un nuevo estado estable. Una fluctuación origina una modificación local de la microestructura que, si los mecanismos reguladores resultan inadecuados, modifica la macroestructura. Lejos del equilibrio, la materia se autoorganiza de forma sorprendente y pueden aparecer espontáneamente nuevas estructuras y tipos de organización que se denominan estructuras disipativas. Aparece un nuevo tipo de orden llamado orden por fluctuaciones : si las fluctuaciones del ambiente aumentan fuera de límite, el sistema, incapaz de disipar entropía a ese ambiente, puede a veces "escapar hacia un orden superior" emergiendo como sistema más evolucionado.

En estos nuevos tipos de estructuras y orden se basan la vida, la organización de un termitero, los ecosistemas y las propias organizaciones y sociedades humanas. Pero lo más importante es que este nuevo orden en el que el determinismo y el azar se llevan de la mano si que es un universal. Estas estructuras, al igual que la vida no aparecen y progresan por pura casualidad o accidente como se creía.


El método científico como límite del intercambio de información con el entorno.
Como comentaba en el post anterior, nuestros genes transportan una información preciosa conseguida del entorno a través de millones de años de intercambio y evolución. Nacemos, casi, como una hoja de papel en blanco, y a partir de entonces seguimos aprendiendo de nuestro exterior. De nuestros padres, de las demás personas y seres, del comportamiento de los otros, de todo lo que nos pasa y de la información que nos llega. Lo externo, como un todo, nos hace como somos. A la ciencia como estructura, en cierta forma le pasa igual. A través del método científico necesita, para avanzar, contrastar las teorías mediante experimentos que confirmarán o no su adecuación a la realidad. En ese sentido desde la menor prueba al mayor de los experimentos, son la forma de interactuar con el entorno para ganar en orden, información y complejidad. Experimentos tan formidables como los que se están realizando, o se realizarán, con el LHC nos permitirán confirmar un montón de teorías y suposiciones, o nos ayudarán a concebir otras nuevas, que seguirán cambiando nuestra sociedad y a nosotros mismos en un baile sin fin en la escala de la complejidad.


Y en ese curioso "baile", incluso si llega a ocurrir lo que se ha llegado a denominar "La singularidad" (singularidad tecnológica), la aparición de los ordenadores ultralistos (máquinas "más inteligentes que los seres humanos") como cuenta el artículo de 1993 escrito por el ingeniero informático y escritor de ciencia ficción Vernor Vinge, en el que sostiene que la aceleración del progreso tecnológico nos ha llevado "al borde de un cambio comparable a la aparición de la vida humana en la Tierra", la esencia no cambiará. En el hipotético futuro en el que las supermáquinas inteligentes o cualquier supercivilización nos supere, seguirá necesitando de su entorno para aprender y aprender cada vez más, seguirán necesitando contrastar sus hipótesis con la realidad y confrontando su tecnología con esa misma realidad.

Reflexiones: multiversos, espespacio-tiempo, mito
¿Hasta cuando? Hay un límite, nuestro universo no es infinito y su final será la llamada muerte térmica, la uniformidad total de la que ya no se podrá extraer ni energía ni información, el estado de máxima entropía y máximo desorden. Aunque haciendo una suposición más de ciencia ficción que de ciencia, antes de llegar a esto es de suponer que alguna de las civilizaciones más avanzadas habrá aprendido todo lo que se puede aprender sobre las leyes físicas de este universo, y podría tener una tecnología capaz de llevarla a otros universos en estados menos degradados (suponiendo que vivimos en un multiverso).


Entre todo esto, una reflexión más: seguimos suponiendo el espacio y el tiempo como el contenedor fundamental de todo lo que es y acontece en el universo (multiverso), pero las dos teorías física más formidables con las que contamos, la relatividad general y la mecánica cuántica y sobre todo su incipiente fusión a la que llamamos gravedad cuántica, nos cuentan que ni el espacio ni el tiempo son las entidades fundamentales que creemos sino que dimanan de otra puramente cuántica subyacente. El universo, el nuestro, tuvo un principio, pero ¿ el multiverso si existe tuvo un principio o siempre estuvo ahí? Es más, ¿tiene sentido seguir hablando en términos de tiempo y espacio, tal como los conocemos, sabiendo que hay alguna entidad cuántica más fundamental de la que emanan?

Primero fue el mito para explicar la realidad que no entendíamos, le han seguido la filosofía y la ciencia, y conforme avanzamos con ella nos va adentrando en un mundo que cada vez nos parece más mítico y menos real. Caminamos como un ciego que sólo cuenta con su inteligencia y su metódico bastón científico, y vivimos tiempos de grandes cambios que, espero, pronto (1) nos darán una nueva bella teoría sobre gravedad cuántica que nos ayude a entender mejor este mundo y a nosotros mismos. Un abrazo.

(1) Soy muy optimista.
La primera figura (estructuras disipativas) está tomada del estupendo blog "Hombres que corren con lobos"

Un amigo nos comenta sobre el interesantísimo cuento de Isaac Asimov:" La última pregunta". Os lo recomiendo.
Reedición del post del mismo nombre. Felices fiestas amigos.

2016/04/19

Leyes del caos, vida e inteligencia


La ciencia del caos, curiosamente, ha hecho una aportación trascendental para mejorar nuestra comprensión del mundo. Hasta ahora se creía que la vida y con ella la inteligencia eran puras casualidades pero ahora sabemos que la materia, ciega en el equilibrio, manifiesta potencialidades imposibles en otras condiciones alejadas del mismo siempre que haya la necesaria aportación de energía. Con las leyes que rigen nuestro no hubo más que esperar el tiempo necesario para que las estrellas crearan los átomos imprescindibles para la vida y ésta progresara, a través de organismos cada vez más sofisticados y adaptados al ambiente de forma más eficiente, permitiendo que apareciese la inteligencia en especies evolucionadas como la nuestra.


Si la vida y la inteligencia vienen impresas en las propias leyes que nos rigen la posibilidad de vida e inteligencia extraterrestres están aseguradas.Ilya Prigogine, recibió el premio Nobel de Química en el año 1977 por su aporte al conocimiento de las "estructuras disipativas" en el mundo físico, es decir, el estudio de la aparición del orden en condiciones alejadas del equilibrio. El término estructura disipativa busca representar la asociación de las ideas de orden y disipación. El nuevo hecho fundamental es que la disipación de energía y de materia, que suele asociarse a la noción de pérdida y evolución hacia el desorden, se convierte, lejos del equilibrio, en fuente de orden. Estas estructuras están en la base de la vida y en ellas el orden se establece en base a ecuaciones de evolución no lineal, de mucha mayor complejidad que cerca del equilibrio en donde las soluciones son mucho más simples y se pueden linealizar.

Potencialidad:
Lejos del equilibrio existen muchas soluciones, potencialidades que no existen cerca del equilibrio. Esta riqueza nos puede guiar mucho mejor para comprender fenómenos complejos como la historia del clima, de la Tierra y de la propia vida. Todo esto está ligado a una estructura de no equilibrio que era incomprensible desde una perspectiva antigua: el no equilibrio no es sólo degradación, sino también construcción. Ni el tiempo repetitivo de la mecánica ni el tiempo-degradación de la termodinámica clásica pueden explicar la riqueza del mundo tal como lo vemos. La naturaleza inventa. Nada es reversible. Y su dimensión temporal dista de agotarse en la concepción matemática de un tiempo absoluto, como la concepción abstracta de la mecánica clásica. En los sistemas sencillos no caóticos su atractor, una especie de representación de sus variables dinámicas, es una figura geométrica simple o un punto, mientras que en los caóticos son figuras de una complejidad extraordinaria llamados atractores extraños. De esa complejidad se pueden extraer infinitas posibilidades para la evolución futura del sistema.


Los mecanismos de organización en las estructuras disipativas sólo pueden aparecer cuando el medio externo mantiene, mediante la aportación energética, el sistema alejado del equilibrio. La estructura es creada y mantenida gracias al intercambio de energía con el exterior. Por eso las llamamos estructuras disipativas. En ciertas condiciones críticas externas, las ínfimas fluctuaciones naturales y constantes de un sistema pueden, en vez de atenuarse, amplificarse y arrastrar el sistema en una u otra dirección. La rama de la bifurcación que escogerá el sistema es imprevisible, pues el fenómeno es aleatorio y parece fruto del azar.

La segunda ley, orden y desorden:
En un sistema aislado, la segunda ley de la termodinámica nos enseña que el desorden, la entropía, aumenta irremediablemente, pero eso no impide que una parte de ese sistema con una aportación de energía y materia de su entorno aumente su orden y disminuya su entropía. La suma total de entropía sigue aumentando, pero esa parte del sistema se organiza a costa de aumentar el desorden a su alrededor. Esa es la historia esencial de los organismos vivos. Cuando las condiciones externas cambian y se vuelven extremas el organismo entra en crisis y aparecen fenómenos aleatorios de bifurcación que le dan opciones de supervivencia. El sistema elige una de las opciones que se adaptará mejor o peor a las nuevas condiciones. Si elige bien vuelve a encontrar un periodo de estabilidad regido por el orden, si vuelve a entrar en crisis volverá el desorden y la nueva elección.

Hasta Prigogine, la ciencia pensaba que la vida era una especie de casualidad, un raro fenómeno difícil de reproducir, pero con Prigogine hemos aprendido que la materia lejos del equilibrio manifiesta potencialidades imposibles en otras condiciones. La intuición de que era posible elaborar una termodinámica general de sistemas vivos o abiertos y de sistemas cerrados, aislados e inertes, le valio a Ilya Prigogine el Premio Nobel de Química.

Algo más sobre el caos:


Historia, dignidad y efecto mariposa.

Efecto mariposa, un atráctor extraño.

2015/03/27

El Big Bang, una explosión en perfecto orden



La curvatura del espacio-tiempo se manifiesta como un efecto marea. Si caemos hacia una gran masa sentiremos que nuestro cuerpo se estira en la dirección de caida y se aplasta en las direcciones perpendiculares a aquella. Esta distorsión de marea aumenta a medida que nos acercamos, de forma que para un cuerpo que caiga a un agujero negro de varias masas solares el efecto lo destrozaría, destrozaría sus moléculas, sus átomos, después, sus núcleos y todas las partículas subatómicas que lo constituyeran. Un verdadero efecto desorganizador, y motor de desorden, de la gravedad en su máximo exponente. No sólo la materia, sino el propio espacio-tiempo encuentran su final en las llamadas singularidades del espacio-tiempo que representan los agujeros negros. Son consecuencias que se deducen de las ecuaciones clásicas de la relatividad general de Einstein y de los teoremas de singularidad de Penrose y Hawking.



Si los agujeros negros son singularidades en donde colapsa la materia y el propio espacio-tiempo, existen otro tipo de singularidades. Utilizando la dirección inversa del tiempo nos encontramos con la singularidad incial en el espacio-tiempo que llamamos Big Bang. Esta singularidad representa todo lo contrario, la creación del espacio-tiempo y de la materia. Aunque podríamos pensar que hay una completa simetría entre los dos fenómenos, cuando los estudiamos con detenimiento encontramos que no pueden ser exactamente inversos en el tiempo. La diferencia entre ellos contiene la clave del origen de la segunda ley de la termodinámica, la famosa ley que dice que :"La cantidad de entropía, o desorden, de cualquier sistema aislado termodinámicamente tiende a incrementarse con el tiempo, hasta alcanzar un valor máximo". También contine la clave de la llamada flecha del tiempo.


La entropía (o medida del desorden) en un agujero negro es elevadísima. De hecho, para hacernos una idea, la compararemos con la entropía que suponíamos que contribuía en mayor manera al total del Universo, la correspondiente a la radiación de fondo. Esta entropía, en unidades naturales, considerando la constante de Boltzman como unidad, es del orden de 108 por cada barión del Universo, mientras que la entropía por barión en el Sol es del orden de la unidad. Mediante la fórmula de Bekenstein-Hawking se encuentra que la entropía por barión en un agujero negro de masa solar (en agujeros más masivos es todavía mayor) es del orden de 1020 en unidades naturales.


Para un Big Crunch, o "crujido" final en que colapsara todo el Universo en un gigantesco agujero negro, la entropía por barión sería del orden de 1031. La existencia de la segunda ley de la termodinámica sería imposible en un universo que emergiera con ese desorbitado desorden,siguiendo una simetría temporal entre singularidades de colapso y de creación. De hecho el Big Bang fue una gran explosión en completo orden. Dio lugar a nuestro espacio-tiempo y a la materia de nuestro Universo y desde entonces ha ido aumentando la entropía, según la segunda ley, y marcando una flecha del tiempo que va desde este inicio al final del Universo.




El orden inicial, tal como apunta Penrose y se comenta en la entrada "las estrellas, fuente de orden y de baja entropía", es el responsable de todo nuestro orden actual y futuro, y de la organización que presentan nuestros organismos vivos.


Hasta tal punto fue ordenada la explosión inicial, que la distorsión destructiva a la que me refería al principio, que tiende a infinito en un agujero negro, fue igual a cero en el Big Bang. Esta distorsión del espacio-tiempo, con conservación de volumen, debida al tensor de curvatura espacio-temporal llamado Weyl, fue nula.


Comentario del autor (18-09-2007):
A diferencia de lo que ocurre en la implosión de la materia para formar un agujero negro, que es un fenómeno capaz de crear cantidades inmensas de entropía (o desorden), en el momento de la "explosión" del Big Bang la entropía fue mínima, de hecho es la única forma en que se puede dar un Universo con la segunda ley de la termodinámica. A partir de entonces la entropía no ha dejado de crecer.
Lo que ocurre es que la "explosión" del Big Bang no lo fue en el sentido que conocemos: algo que estalla en el espacio y en el tiempo, fue el propio "estallido" del espacio-tiempo. Para entenderlo se suele poner el ejemplo de un globo cuando se hincha. Debemos imaginar que la superficie del globo es el propio espacio-tiempo que se ensancha aunque de forma muy violenta, formando el propio espacio-tiempo que conocemos. No hay un centro estático de la explosión, porque todo se aleja de todo, tal como observamos en la expansión actual del Universo.



Reedición del post de fecha 26/09/2007. Un saludo amigos.

2009/06/11

Estructuras disipativas, método científico y entropía

De la interacción con nuestro entorno intercambiamos materia y obtenemos energía y conocimiento en bruto que después convertimos en ciencia y tecnología. La vida, los ecosistemas y las propias sociedades humanas son un tipo especial de estructuras llamadas disipativas que obtienen orden (disminuyen su entropía) a costa del entorno. Son estructuras abiertas que aumentan su información útil a partir de la información exterior. En el límite, este fenómeno es el que lleva a la ciencia a confirmar con experimentos la veracidad de sus teorías

Estructuras disipativas
En el equilibrio o cerca de él, no se produce nada interesante, todo es lineal. Cuando pueden ocurrir cosas sorprendentes es lejos del equilibrio: si llevamos un sistema lo bastante lejos del equilibrio, entra en un estado inestable con relación a las perturbaciones en un punto llamado de bifurcación. A partir de entonces la evolución del sistema está determinada por la primera fluctuación, al azar, que se produzca y que conduzca al sistema a un nuevo estado estable. Una fluctuación origina una modificación local de la microestructura que, si los mecanismos reguladores resultan inadecuados, modifica la macroestructura. Lejos del equilibrio, la materia se autoorganiza de forma sorprendente y pueden aparecer espontáneamente nuevas estructuras y tipos de organización que se denominan estructuras disipativas. Aparece un nuevo tipo de orden llamado orden por fluctuaciones : si las fluctuaciones del ambiente aumentan fuera de límite, el sistema, incapaz de disipar entropía a ese ambiente, puede a veces "escapar hacia un orden superior" emergiendo como sistema más evolucionado.

En estos nuevos tipos de estructuras y orden se basan la vida, la organización de un termitero, los ecosistemas y las propias organizaciones y sociedades humanas. Pero lo más importante es que este nuevo orden en el que el determinismo y el azar se llevan de la mano si que es un universal. Estas estructuras, al igual que la vida no aparecen y progresan por pura casualidad o accidente como se creía.


El método científico como límite del intercambio de información con el entorno.
Como comentaba en el post anterior, nuestros genes transportan una información preciosa conseguida del entorno a través de millones de años de intercambio y evolución. Nacemos, casi, como una hoja de papel en blanco, y a partir de entonces seguimos aprendiendo de nuestro exterior. De nuestros padres, de las demás personas y seres, del comportamiento de los otros, de todo lo que nos pasa y de la información que nos llega. Lo externo, como un todo, nos hace como somos. A la ciencia como estructura, en cierta forma le pasa igual. A través del método científico necesita, para avanzar, contrastar las teorías mediante experimentos que confirmarán o no su adecuación a la realidad. En ese sentido desde la menor prueba al mayor de los experimentos, son la forma de interactuar con el entorno para ganar en orden, información y complejidad. Experimentos tan formidables como los que se están realizando, o se realizarán, con el LHC nos permitirán confirmar un montón de teorías y suposiciones, o nos ayudarán a concebir otras nuevas, que seguirán cambiando nuestra sociedad y a nosotros mismos en un baile sin fin en la escala de la complejidad.


Y en ese curioso "baile", incluso si llega a ocurrir lo que se ha llegado a denominar "La singularidad" (singularidad tecnológica), la aparición de los ordenadores ultralistos (máquinas "más inteligentes que los seres humanos") como cuenta el artículo de 1993 escrito por el ingeniero informático y escritor de ciencia ficción Vernor Vinge, en el que sostiene que la aceleración del progreso tecnológico nos ha llevado "al borde de un cambio comparable a la aparición de la vida humana en la Tierra", la esencia no cambiará. En el hipotético futuro en el que las supermáquinas inteligentes o cualquier supercivilización nos supere, seguirá necesitando de su entorno para aprender y aprender cada vez más, seguirán necesitando contrastar sus hipótesis con la realidad y confrontando su tecnología con esa misma realidad.

Reflexiones: multiversos, espespacio-tiempo, mito
¿Hasta cuando? Hay un límite, nuestro universo no es infinito y su final será la llamada muerte térmica, la uniformidad total de la que ya no se podrá extraer ni energía ni información, el estado de máxima entropía y máximo desorden. Aunque haciendo una suposición más de ciencia ficción que de ciencia, antes de llegar a esto es de suponer que alguna de las civilizaciones más avanzadas habrá aprendido todo lo que se puede aprender sobre las leyes físicas de este universo, y podría tener una tecnología capaz de llevarla a otros universos en estados menos degradados (suponiendo que vivimos en un multiverso).


Entre todo esto, una reflexión más: seguimos suponiendo el espacio y el tiempo como el contenedor fundamental de todo lo que es y acontece en el universo (multiverso), pero las dos teorías física más formidables con las que contamos, la relatividad general y la mecánica cuántica y sobre todo su incipiente fusión a la que llamamos gravedad cuántica, nos cuentan que ni el espacio ni el tiempo son las entidades fundamentales que creemos sino que dimanan de otra puramente cuántica subyacente. El universo, el nuestro, tuvo un principio, pero ¿ el multiverso si existe tuvo un principio o siempre estuvo ahí? Es más, ¿tiene sentido seguir hablando en términos de tiempo y espacio, tal como los conocemos, sabiendo que hay alguna entidad cuántica más fundamental de la que emanan?

Primero fue el mito para explicar la realidad que no entendíamos, le han seguido la filosofía y la ciencia, y conforme avanzamos con ella nos va adentrando en un mundo que cada vez nos parece más mítico y menos real. Caminamos como un ciego que sólo cuenta con su inteligencia y su metódico bastón científico, y vivimos tiempos de grandes cambios que, espero, pronto (1) nos darán una nueva bella teoría sobre gravedad cuántica que nos ayude a entender mejor este mundo y a nosotros mismos. Un abrazo.

(1) Soy muy optimista.
La primera figura (estructuras disipativas) está tomada del estupendo blog "Hombres que corren con lobos"

Un amigo nos comenta sobre el interesantísimo cuento de Isaac Asimov:" La última pregunta". Os lo recomiendo.

2009/02/10

Entalpía y entropía, la física de la vida

Cuando mis obligaciones me lo permiten me paso por la librería París-Valencia de la Gran Vía del Marqués del Turia (Valencia), la de la calle Pelayo o la de la Glorieta. Allí suelo encontrar verdaderas oportunidades en libros científicos (y en cualquier otro tipo de libros). El otro día encontré un hermoso libro muy bien encuadernado, con buenas ilustraciones a todo color y no menos llamativas y detalladas explicaciones sobre los procesos básicos de la vida. En la primera de las seis partes de que se compone comienza con una introducción a las reacciones químicas de la célula, y habla sobre las variables termodinámicas de estado, entalpía y entropía, esenciales para comprender este tipo de reacciones. Precisamente sobre esto hablaremos en este post, sobre los factores energéticos que influyen y posibilitan las reacciones bioquímicas y, por tanto, la propia vida.


La vida y la energía:
La vida es un complejo proceso físico-químico en el que están implicadas miles de reacciones diferentes que se llevan a cabo de un modo organizado. Estas reacciones se llaman reacciones metabólicas y al conjunto de ellas metabolismo. Las estrategias que han debido perfeccionarse a lo largo de millones de años de evolución son ciertamente elegantes y fascinantes, pero la consideración fundamental ante cualquier aspecto relacionado con la vida viene referido a una serie de aportes o pérdidas de energía. Son, pues, las consideraciones energéticas las que determinan si una reacción se puede producir a velocidad significativa, o si la misma puede o no producirse en sentido opuesto.

Entalpía H(*):
En los sistemas moleculares del interior de las células, donde tienen lugar las reacciones químicas, las variaciones de energía no son tan evidentes como en los sistemas físicos más usuales y sencillos sujetos a cambios de energía potencial y cinética, como puedan ser los que se refieren a movimientos de cuerpos en un campo gravitatorio. Un sistema químico comprende una gran cantidad de moléculas diferentes que contienen una cierta cantidad de energía en función de su estructura. Esta energía puede ser descrita como el contenido en calor o entalpía (H) de la molécula. Cuando una molécula se transforma en una estructura diferente mediante una reacción química, su contenido energético puede cambiar. Su variacion de entalpía puede ser negativa, cuando se pierde calor de la molécula, y éste se libera elevando la temperatura exterior, o positiva, cuando se capta calor del exterior.


A primera vista, parece sorprendente que puedan producirse reacciones con una variación de entalpía positiva, lo que podría compararse, en cierta forma, con un cuerpo que se elevara a sí mismo del suelo, absorbiendo la energía necesaria del exterior espontáneamente. Precisamente, en las reacciones químicas una variación negativa de la entalpía favorece la reacción, mientras que una variación positiva tiene el efecto opuesto. De todas formas, la variación de la entalpía no es el único árbitro que determina la viavilidad de las reacciones, la variación de la entropía (S) tiene mucho que decir en el asunto.

Entropía (S):
La entropía puede definirse como el grado de desorden de un sistema. En una reacción bioquímica, este desorden puede adoptar tres formas:

- Las moléculas no suelen ser rígidas ni permanecer fijas, por lo que pueden vibrar, girar o rotar. Cuanto mayor es la libertad para consentir estos movimientos moleculares, mayor es el desorden o la entropía.
- En un sistema bioquímico están implicadas un gran número de moléculas individuales que pueden encontrarse distribuidas de modo disperso y desordenado o adoptar algún tipo de disposición ordenada como ocurre en gran medida en las células vivas.
- El número de moléculas individuales o iones pueden cambiar como resultado de la transformación química. Cuanto mayor es su número, mayor es el desorden y por tanto la entropía.

Tanto la variación de entalpia como la variación de la entropía intervienen en la decisión para determinar si una reacción química puede producirse o no:

- Pérdida de entalpía y ganancia de entropía => refuerzan ambos la decisión: SÍ a la reacción química.

- Ganancia de entalpía y pérdida de entropía => refuerzan ambos la decisión: No a la reacción química.


Energía libre (G):
Sin embargo, en los sistemas biológicos es difícil si no imposible, en muchas ocasiones, medir el término de la variación de entropía. La solución se hace más fácil con la introducción del concepto de energía libre de Gibbs que combina los dos términos en uno solo. El cambio de energía libre o G, según Gibbs, viene dado por la expresión: (variación de G) = (variación de H) - T (variación de S), donde T es la temperatura absoluta. Esta ecuación se aplica a los sistemas en los que la temperatura y la presión permanecen constantes durante el proceso, como es el caso de los sistemas biológicos.

Al hablar de energía libre nos referimos a energía disponible para realizar un trabajo útil. Representa la máxima cantidad de energía procedente de una reacción química disponible para realizar trabajo útil. Este incluye la contracción muscular, la síntesis química en la celula y los trabajos osmóticos y eléctrico, sus valores se expresan en unidades de calorías o julios ( 1 caloría = 4,19 julios) por unidades de masa molecular.

El término de mayor importancia:
La variación de energía libre es el término de mayor importancia termodinámica en una reacción, hasta tal punto que sólo puede ocurrir si dicha variación de energía libre es negativa, es decir, si en las condiciones predominantes los productos de la reacción tienen menos energía libre que los reactivos.


(*)Entalpía termodinámica:

La entalpía (simbolizada generalmente como "H", también llamada contenido de calor, y calculada en Julios en el sistema internacional de unidades o también en kcal ), es una variable de estado, (lo que quiere decir que, sólo depende de los estados inicial y final) que se define como la suma de la energía interna de un sistema termodinámico y el producto de su volumen y su presión.
La entalpía total de un sistema no puede ser medida directamente, al igual que la energía interna, en cambio, la variación de entalpía de un sistema sí puede ser medida experimentalmente. El cambio de la entalpía del sistema causado por un proceso llevado a cabo a presión constante, es igual al calor absorbido por el sistema durante dicho proceso.
La entalpía se define mediante la siguiente fórmula: H = U + p V (energía interna + presión por volumen).