Mostrando entradas con la etiqueta energía oscura. Mostrar todas las entradas
Mostrando entradas con la etiqueta energía oscura. Mostrar todas las entradas

2016/09/26

Fractales, física clásica y nuevas teorías (II)


¿La energía de las fluctuaciones cuánticas del vacío tiene estructura prefractal? (**Nota**)
Detrás de esta sencilla hipótesis quizás podamos encontrar seis dimensiones compactadas y el origen de la energía oscura.

Como se comentaba en la anterior entrada, en la naturaleza observamos una geometría diferente a la euclidea, mucho más cercana a la que el matemático Benoît Mandelbrot llamó geometría fractal. Aunque en ella, lógicamente, el fractal puramente matemático no se puede dar pues su estructura no se puede repetir en un número infinito de escalas. Por esa razón se llama prefractal, es decir fractal en un número finito de escalas.


Concepto de estructura fractal
Fractal natural (prefractal)
Con los fractales, estamos ante un concepto geométrico para el que aún no existe un una definición precisa, ni una teoría única y comúnmente aceptada.
Kenneth Falconer, en su obra titulada “Fractal Geometry: Mathematical Foundations and Applications”, en1990, describe un concepto de estructura fractal ‘F’ como la que satisface alguna(s) de las propiedades siguientes:

(1).- “F” posee detalle a todas las escalas de observación;
(2).- No es posible describir “F” con Geometría Euclidiana, tanto local como globalmente;
(3).- “F” posee alguna clase de autosemejanza, posiblemente estadística;
(4).- La dimensión fractal de “F” es mayor que su dimensión topológica;
(5).- El algoritmo que sirve para describir “F” es muy simple, y posiblemente de carácter recursivo.

En resumen, una técnica análoga a la que los biólogos aplican al concepto de vida.

La curva de Koch
Los fractales  más sencillos, como la curva de Koch, nos enseñan lo fundamental de su esencia. En este  caso su característica más importante, su dimensión fractal, resulta de una relación entre dos cantidades escalares. En cada nueva iteración un segmento de medida tres es sustituido por otros cuatro segmentos de medida la unidad, tal como aparece en la figura. La relación (log 4)/(log 3) = 1,261859 … nos da la dimensión fractal de esa curva y determina su forma a todas las escalas.




En el vacío, la existencia del cuanto de acción, que está íntimamente unida a la propia naturaleza de la energía de las fluctuaciones cuánticas, obliga a que su estructura sea discontinua, escalonada, fractal (prefractal), lejos de la continuidad clásica (Esta es una hipótesis de la que se parte: Estructura fractal de la energía de las fluctuaciones cuánticas del vacío. El planteamiento es mucho más particular que el que representa la relatividad de escala de Laurent Nóttale). Hasta el punto de que las trayectorias de las partículas, electrones, protones, átomos, etc, ha dejado de ser una verdadera trayectoria para convertirse en curvas fractales de dimensión 2 (Laurent Nóttale complementó la definición de Richard Feynman (1965) y A. Hibbs sobre las trayectorias virtuales típicas de una partícula cuántica, indicando que los caminos cuánticos posibles son, en número infinitos, y todos son curvas fractales caracterizadas por una propiedad geométrica común: su dimensión fractal es 2). Por  ello la geometría fractal puede enseñarnos algo que antes no podíamos ver.




Energía del vacío y curva de Koch
Las fluctuaciones cuánticas de energía del vacío no son simples variaciones sobre un fondo absoluto y estático, determinan la propia geometría del espacio, por lo que analizando su estructura podremos averiguar algo más sobre la referencia espaciotemporal que determinan. La forma en que se puede proceder a analizarlas es idéntica a como se determina la dimensión fractal de una costa o cualquier figura fractal sencilla como la curva de Koch. La pauta que nos guía, en nuestro caso, es la variación de la energía virtual de las fluctuaciones con la distancia. Desde distancias astronómicas hasta la longitud de Planck la energía asociada está siempre en proporción inversa a dicha distancia: si para una distancia D se le asocia una energía E, para una distancia 2D se le asocia una energía E/2.





En las curvas fractales analizamos la relación existente entre los segmentos característicos (escalares) que definen su construcción, en el vacío cuántico debemos tomar una relación entre dos magnitudes escalares capaces de definir la forma del espacio. Esas magnitudes que varían con la escala son los diferentes valores que toma la energía del vacío según como se mida. En la curva de Koch encontrábamos un valor 3 si mediamos la distancia AE en una dimensión (línea recta) y otro valor 4 si la mediamos en dos dimensiones, ABCDE.





Suponiendo una hipótesis fractal para la energía de las fluctuaciones cuánticas del vacío

Podríamos tener algo similar:

Entre dos puntos arbitrarios A y E, en tres dimensiones, la energía de las fluctuaciones tendría un valor relacionado con el inverso de la distancia, entre dichos puntos. En nueve dimensiones (propuesta teoría de cuerdas) su valor estaría relacionado en proporción directa a la distancia (lo que se corresponde con el valor encontrado para la densidad de la energía oscura).





(Para seguir paso a paso el desarrollo de la hipótesis, sin hacer demasiado pesado el post, se puede visitar la página Mi_ciencia_abierta y de forma más sencilla el artículo de la revista Elementos, de la Universidad de Puebla, El sorprendente vacío cuántico)






Gravedad cuántica de bucles
Generalizando los resultados obtenidos, en base a ciertas aproximaciones y a las hipótesis de las que se parte, se puede llegar a los siguientes resultados:


A pesar de lo intrincadas e irregulares que son las fluctuaciones cuánticas su dependencia con el inverso de la distancia permite al vacío cuántico que se nos presente de forma, prácticamente, similar al vacío clásico a pesar de las tremendas energías a las que se encuentra asociado. En este efecto tuvo mucho que ver la particular geometría que, hipotéticamente,  adoptó nuestro Universo: 3 dimensiones espaciales ordinarias y 6 compactadas. Esta geometría y la propia naturaleza del cuanto de acción están íntimamente ligadas. Con otra geometría diferente las reglas de la mecánica cuántica en nuestro universo serían completamente diferentes.



La estabilidad del espacio-tiempo, de la materia y de la energía tal como los conocemos sería imposible y, a la postre, tampoco sería posible la belleza que esta estabilidad posibilita así como la propia inteligencia y armonía que, en cierta forma, subyace en todo el Universo.





En cierta forma, la malla que constituye el espacio-tiempo que supone la teoría llamada gravedad cuántica de bucles, en primera aproximación, estaría conformada por la energía de las fluctuaciones. Las nueve dimensiones espaciales de la teoría de cuerdas, admitiendo la hipótesis fractal de las fluctuaciones, configurarían esa dualidad de energías del vacío: en nuestro mundo tridimensional la energía del vacío depende del inverso de la distancia, en las nueve dimensiones (seis de ellas compactadas) daría lo que llamamos energía oscura, capaz de acelerar la expansión del universo.








(**Nota**) Un fractal matemático observa la misma estructura en infinitas escalas. En la naturaleza no se puede hablar de auto semejanza en infinitas escalas por lo que en lugar de  fractal se utiliza el término prefractal. En el caso de la energía cuántica del vacío estaríamos hablando de más de 50 órdenes de magnitud en el recorrido de las escalas, lo que supone un caso extraordinario en la naturaleza.

2016/03/24

Una propuesta sobre la energía oscura


A proposal on dark energy


Admitiendo una hipótesis fractal para la energía de las fluctuaciones cuánticas del vacío y suponiendo que dicha energía sea capaz de recubrir las 9 dimensiones espaciales sugeridas por la teoría de supercuerdas...la energía oscura parece emerger de forma natural.

Admitting a fractal hypothesis for the energy of the quantum vacuum fluctuations and assuming that this energy is capable of coating 9 spatial dimensions suggested by superstring theory ... dark energy seems emerge naturally.
Composición cosmológica. Wikipedia



Fractales, el espacio que son capaces de ocupar
Una curva geométrica clásica tiene una dimensión topológica igual a la unidad, pero una curva fractal es capaz de llenar una superficie (dimensión 2) o, incluso, un espacio (dimensión 3). En estos caso se dice que tiene dimensión 2 ó dimensión 3, pues la dimensión fractal nos indica la capacidad que tiene la curva de ocupar un espacio de mayor dimensión a su dimensión topológica .

El que una curva fractal, cuya dimensión topológica es la unidad, sea capaz de ocupar un espacio de  dimensión 3 sería similar al hecho de que la energía del vacío de las fluctuaciones cuánticas (dimensión 3) fueran capaces de ocupar un espacio hipotético de 9 dimensiones (el sugerido por la teoría de supercuerdas). De hecho, la dimensión fractal relativa sería en los dos casos igual a 3.

Un fractal clásico, el movimiento browniano
Y hablando del espacio que es capaz de llenar un fractal, es interesante resaltar la dimensión fractal de un movimiento totalmente aleatorio en el espacio: el llamado movimiento browniano.
Dado que es capaz de cambiar aleatoriamente de dirección y explorar a lo largo de los tres ejes, podríamos aventurar que este tipo de movimiento llegaría  a recubrir un espacio de tres dimensiones, pero no es así. El movimiento browniano tiene dimensión fractal 2 y sólo sería capaz de llenar una superficie, no un plano.

Este movimiento goza de una propiedad muy curiosa. Imaginemos que medimos la distancia que es capaz de alejarse de un determinado punto; descubriremos que si se han dado n2 pasos, la distancia efectiva recorrida sólo será de n pasos. Es decir, la distancia total recorrida es igual a la distancia efectiva elevada a un factor de 2, que es precisamente su dimensión fractal. Esa misma propiedad es posible generalizarla a fractales de dimensión topológica mucho mayor que 1 si son continuos y, razonablemente, isótropos. Precisamente en estos casos la dimensión fractal relativa actúa de la misma forma que la dimensión fractal en las curvas.Volviendo al caso del movimiento browniano, la distancia efectiva está tomada en una dimensión (la línea recta) mientras que la distancia total recorrida está medida sobre el fractal, en las dos dimensiones que es capaz de recubrir.

Aplicando todo esto a la energía de las fluctuaciones del vacío
Si, con lo visto hasta ahora, nos centramos en la energía de las fluctuaciones cuánticas del vacío y suponemos que es capaz de recubrir las 9 dimensiones hipotéticas, que nos plantea la teoría de supercuerdas, encontraremos que la “energía total” es la “energía efectiva” elevada al cubo:  Energ. total = (Energ. efectiva)3  

La energía que hemos llamado “efectiva” es la energía de las fluctuaciones cuánticas del vacío en nuestras 3 dimensiones espaciales y depende del inverso de la distancia. A las distancias de nuestra vida cotidiana esa energía es completamente despreciable, pero conforme disminuyen éstas llega a hacerse significativa, hasta llegar a la llamada energía de Planck que se corresponde con la menor distancia posible llamada longitud de Planck (1,616199 x 10-35  metros). La energía que hemos llamado “total” sería la tomada en las 9 dimensiones hipotéticas. Si llamamos a “n” la distancia, la energía efectiva sería del orden de 1/n y la energía total sería una cantidad  que guarde la misma relación con 1/n que la relación (n3/n). El valor que encontramos es “n”. Es decir la energía “total” será proporcional a la distancia, no al inverso de la misma.                                              

(Ir a (+)Observaciones para entender mejor el hecho de aplicar la proporcionalidad de la relación (n3/n))



Conclusiones
Considerando la hipótesis fractal para la energía de las fluctuaciones cuánticas del vacío y que dicha energía sea capaz de recubrir el espacio de 9 dimensiones sugerido por la teoría de supercuerdas, ¡¡¡ encontramos una energía asociada a estas 9 dimensiones que coincidiría en magnitud con la llamada energía oscura!!! Una energía proporcional a la distancia, a diferencia de la energía de las fluctuaciones del vacío cuántico que es inversamente proporcional, capaz de mantener la aceleración expansiva del universo.







(+)Observaciones. Relación necesaria entre números naturales para averiguar la dimensión fractal.
Curva_Koch.png
Curva de Koch

Observamos en la figura la construcción de un fractal clásico llamado curva de Koch. La distancia en línea recta (en una dimensión) entre el extremo  A y el extremo E mide 3 segmentos, la distancia sobre el fractal entre A y E (a través de las dos dimensiones del plano) mide 4. Estas medidas son las que determinan la dimensión fractal de la curva: (log 4)/(log 3).

Imaginemos que al medir en línea recta el segmento AE encontramos un valor fraccionario, por el tipo de unidad de medida utilizada, por ejemplo 1/4. Con esa misma unidad de medida la distancia recorrida sobre el fractal sería de 1/3. Al tratar de hallar ahora su dimensión fractal haríamos el cociente: (log 1/3)/(log 1/4) y el resultado sería distinto, lo que resulta absurdo. Tenemos que encontrar la misma relación entre los dos segmentos pero expresada en números naturales. La encontramos al dividir estas dos fracciones:
1/3:1/4 = 4/3 , y el resultado 4 y 3 es el que buscamos.

En el caso de la proporción directa utilizada más arriba, con 1/n  y la relación (n3 / n) hemos hecho lo mismo. Podemos utilizar relaciones de proporcionalidad entre los segmentos, para tratar de encontrar una sencilla relación entre números naturales, aunque lógicamente, no las podremos utilizar entre los logaritmos de dichos segmentos. Abundando sobre el tema podéis leer este documento y ver este post.

2009/11/05

Lo que esconden los fractales y la energía oscura, una hipótesis

Los fractales esconden bajo sus “arrugas” parte de sí mismos. Suponiendo la hipótesis de un vacío cuántico fractal, la escurridiza energía oscura podría ser la consecuencia de la estructura fractal de las fluctuaciones cuánticas del vacío que conforman todo el espacio.


La medida de la costa de Bretaña
Benoït Mandelbrot se preguntaba cuánto medía la costa de Bretaña, o cualquier costa real que suele ser irregular e intrincada. Un geógrafo se lo habría respondido perfectamente, pero no era esa la repuesta que buscaba Mandelbrot. El geógrafo da por sentado que al medir la costa tiene que hacerlo con unos criterios prácticos determinados, se atiene a ellos, la mide y la registra para siempre en los libros de geografía.

Para Mandelbrot, la pregunta era mucho más transcendente de lo que puede parecer a simple vista, porque se dio cuenta de que la medida dependía de la unidad de medida con la que fuera a efectuarse. Si la mínima unidad de medida a tomar fuera un kilómetro hallaríamos un valor, y si esa mínima unidad fuera el doble encontraríamos un resultado menor. Conforme la unidad utilizada es menor, al efectuar la medida nos acercamos mejor a las irregularidades del terreno y hallamos un valor mayor. Para una costa matemática teórica, de hecho, la unidad de medida la podemos hacer tender a cero tanto como queramos y el resultado obtenido siempre será mayor. En el límite la longitud de cualquier costa teórica es infinita.

Dimensión fraccionaria de una costa
Las costas son ejemplos sencillos de unos objetos matemáticos que Benoït Mandelbrot llamó fractales, porque su estructura es discontinua, rota o fracturada (del latín “fractus”) y mantienen el mismo aspecto a diferentes escalas. A diferencia de los objetos geométricos continuos que conocemos como líneas o planos, los fractales son capaces de “llenar” más espacio del que deberían llenar. Las costas fractales, como líneas que son, deberían tener la capacidad de llenar una dimensión, pero realmente llenan 1.25, 1.30, 1.35… etc. Su dimensión, que es fraccionaria, está entre la línea y el plano, es decir entre 1 y 2, y conforme son más irregulares mayor es su dimensión, a la que llamamos dimensión fractal.



Vacío clásico y vacío cuántico
El vacío clásico y continuo es, en cierta forma, como una costa lineal y regular, sin entrantes ni salientes. El vacío cuántico es muy diferente, sus fluctuaciones le confieren una estructura irregular que nos puede recordar la estructura fractal de las costas de los países. De “lejos” no es diferente del vacío clásico, pero de “cerca” nos ofrece una visión muy diferente, las fluctuaciones ganan protagonismo porque dependen del inverso de la distancia: a distancia mitad son el doble de intensas. Esta diferencia entre el vacío clásico y el cuántico se puede observar, perfectamente, tratando de seguir las trayectorias de las partículas subatómicas. En el vacío clásico estas están bien definidas y son líneas continuas, en el vacío cuántico no existen como tales, no son propiamente trayectorias pues conforme las tratamos de observar con más detalle, más irregulares aparecen. Son fractales con una dimensión 2.

¿Vacío cuántico como un fractal?
Todo esto hace pensar en la posibilidad de considerar el vacío cuántico como una fractal, en el que la energía de las fluctuaciones cuánticas determinaría su grado de irregularidad, y en base a su valor (un escalar) se podría calcular la dimensión fractal de estas fluctuaciones que conforman todo el espacio.

Lo que esconden los fractales y la energía oscura, una hipótesis
Entre dos puntos A y B del espacio euclídeo se puede trazar una recta. La distancia entre los dos puntos siguiendo esta recta es la longitud de la misma. Sin embargo si esa recta la convertimos en una costa fractal real (sin las infinitas irregularidades de una costa fractal matemática), la distancia entre los dos puntos, siguiendo la costa, se puede hacer todo lo grande que se desee dependiendo de la cantidad de irregularidades de la misma.

Si observamos esta línea costera en la distancia, las irregularidades se disimulan y su aspecto se acerca al de una línea mucho más regular. Su distancia aparente también estará cercana a la de la línea recta AB. Sabremos la distancia real AB a través de la costa fractal y la distancia aparente, vista la costa desde lejos. En cierta forma parece que ha desaparecido una parte de la costa, una parte que desde lejos no logramos observar, porque queda escondida entre las irregularidades del fractal.

Si suponemos la hipótesis fractal de las fluctuaciones cuánticas del vacío, ¿la parte escondida por este inmenso fractal podría ser la llamada energía oscura?




En la figura:(representación del vacío
cuántico), los trazos más anchos se corresponden con fermiones (quarks, electrones...) y sus antipartículas, mientras que los trazos más finos corresponden a bosones (gluones, fotones, W+, W-, Z0,...). En lo concerniente al color de los quarks y gluones, se corresponden con la carga de color de los mismos mientras que las partículas insensibles a la interacción fuerte aparecen en blanco o gris.)



Lo que sabemos hasta ahora de la energía oscura
La naturaleza exacta de la energía oscura es una materia de especulación. Se conoce que es muy homogénea, no muy densa y no se conoce la interacción con ninguna de las fuerzas fundamentales más que la gravedad. Como no es muy densa, unos 10−29 g/cm³, es difícil de imaginar experimentos para detectarla en laboratorio. La energía oscura sólo puede tener un profundo impacto en el Universo, ocupando el 70% de toda la energía, debido a que por el contrario llena uniformemente el espacio vacío.

Dos posibles formas de la energía oscura son la constante cosmológica, una densidad de energía constante que llena el espacio en forma homogénea y campos escalares como la quintaesencia: campos dinámicos cuya densidad de energía puede variar en el tiempo y el espacio. De hecho, las contribuciones de los campos escalares que son constantes en el espacio normalmente también se incluyen en la constante cosmológica. Se piensa que la constante cosmológica se origina en la energía del vacío. Los campos escalares que cambian con el espacio son difíciles de distinguir de una constante cosmológica porque los cambios pueden ser extremadamente lentos.
Para distinguir entre ambas se necesitan mediciones muy precisas de la expansión del Universo, para ver si la velocidad de expansión cambia con el tiempo. La tasa de expansión está parametrizada por la ecuación de estado. La medición de la ecuación estado de la energía oscura es uno de los mayores retos de investigación actual de la cosmología física.






2007/03/22

Energía del vacío, ¿estructura fractal?

En 1975 Benoit Mandelbrot publicó un ensayo titulado” Los objetos fractales: forma, azar y dimensión” . En la introducción comentaba los conceptos de objeto fractal y fractal como términos que había inventado a partir del adjetivo latino “fractus” ( roto, fracturado). Posteriormente, en 1982, publicó el libro “The Fractal Geometry of Nature”, en donde proponía : “Un fractal es, por definición, un conjunto cuya dimensión de Hausdorff-Besicovitch es estrictamente mayor que su dimensión topológica.”

Han sido propuestas otras definiciones y, de hecho, estamos ante un concepto geométrico para el que aún no existe un una definición precisa, ni una teoría única y comúnmente aceptada.
Kenneth Falconer, en su obra titulada “Fractal Geometry: Mathematical Foundations and Applications”, en1990, describe un concepto de estructura fractal ‘F’ como la que satisface alguna(s) de las propiedades siguientes:

(1).- “F” posee detalle a todas las escalas de observación;
(2).- No es posible describir “F” con Geometría Euclidiana, tanto local como globalmente;
(3).- “F” posee alguna clase de autosemejanza, posiblemente estadística;
(4).- La dimensión fractal de “F” es mayor que su dimensión topológica;
(5).- El algoritmo que sirve para describir “F” es muy simple, y posiblemente de carácter recursivo.


La energía de las fluctuaciones cuánticas del vacío satisface, prácticamente, todas estas propiedades. Desde distancias astronómicas hasta la longitud de Planck (10-35 metros), conocemos el orden de su valor. Posee autosemejanza, pues para cualquier región del espacio con una longitud característica L su valor depende de una constante ((h*c)/( long.Planck)) y del inverso de L .No es posible describirla con geometría euclidiana, por su discontinuidad intrínseca, al depender de la propia existencia del cuanto de acción de Planck, si bien en distancias macroscópicas los escalones de variación tienden a disminuir con el inverso de dicha distancia (L).El algoritmo que sirve para describirla es muy simple, su valor en cada escala L es siempre del orden: ((h*c) / ( long.Planck)) / (L) .
La energía del vacío determina, para cada valor de L, la estructura general de esa región. Para distancias del orden de la longitud de Planck el espacio está curvado como alrededor de un agujero negro, pero con una estructura que llamamos de espuma cuántica, cuyo detalle desconocemos por no tener todavía una teoría cuántica de la gravedad. Para distancias astronómicas su curvatura es practicamente nula y observamos el vacío trasparente y estable que conocemos. La energía cuántica del vacío es, por todo esto, una magnitud escalar adecuada para el estudio de la estructura general del espacio vacío.

Todo fractal esconde parte de su magnitud. ¿ Puede ser esta propiedad, natural en las estructuras fractales, la respuesta a la llamada energía oscura, causante de la aceleración en la expansión del Universo?

Un fractal muy sencillo nos puede ilustrar lo que digo. Supongamos que queremos calcular la longitud de una costa. Al hacer el primer intento utilizamos como unidad de medida sobre el plano 15 kilómetros y nos salen 6 segmentos. La longitud de la costa sería de 90 km.(15 x 6). En un segundo intento tratamos de afinar más y medimos con una "regla" de 7 Km, encontrando esta vez 15 segmentos y, por tanto, una longitud de costa de 105 Km. (7 x 15). Conforme escojamos la unidad de medida más pequeña, conseguimos adaptarnos mejor a las irregularidades de la costa y encontramos una longitud total mayor. Con la energía del vacío podría pasar algo semejante (sólo semejante, no exactamente igual). En el caso de la costa, suponiendo una medida mínima de longitud, y aplicándola como unidad de medida, resultaría una longitud total de costa mucho mayor que las encontradas: cuando comparamos la medida máxima encontrada con las medidas menores, interpretaríamos que existe parte de la costa escondida ( longitud de costa visible por la medida y longitud de costa escondida u "oscura"). Aunque la comparación no es exacta, podría estar pasando algo similar con la energía oscura.


La geometría fractal puede ser el instrumento adecuado para el estudio de ciertas características fractales de las fluctuaciones cuánticas de la energía del vacío. La información que podamos extraer de ellas podría ayudarnos a entender mejor el comienzo y el final de nuestro Universo.