2020/01/08

Gravitación cuántica, distancia fundamental y teoría de cuerdas


La teoría de la relatividad general de Einstein establece una relación directa entre la gravitación y la geometría del espaciotiempo. Esto supone que una teoría cuántica de la gravitación implicará una estructura cuántica del propio espaciotiempo. Y en esta estructura deberá jugar un papel importante una especie de "cuanto espacial", o mínima distancia de interacción. Un nuevo límite fundamental en la Naturaleza, similar a la velocidad de la luz o al cuanto de acción, ahora en la escala de las distancias.

Las dos grandes teorías físicas de las que disponemos, la relatividad general y la mecánica cuántica parecen no llevarse bien entre ellas. La relatividad general está formulada de una manera clásica y esa esencia choca con la formulación cuántica. De hecho, la aplicación directa de las reglas de la mecánica cuántica a la teoría de gravitación de Einstein da lugar a inconsistencias matemáticas. El camino más fácil es intentar formular una teoría cuántica de las ondas gravitacionales, o "arrugas" o vibraciones de la geometría espaciotemporal similares a las ondas electromagnéticas. Cuánticamente, se pueden ver como conjuntos coherentes de partículas, de la misma forma que una onda electromagnética es un conjunto coherente de fotones. Los equivalentes gravitacionales de los fotones se denominan gravitones.

---Distancia fundamental---

A medida que consideramos distancias cada vez menores, las interacciones entre gravitones producen cascadas de creación y aniquilación demasiado violentas, de tal forma que la delicada estructura que funcionaba para las demás partículas fracasa estrepitosamente para los gravitones. Existe una especie de realimentación en la interacción entre gravitones, pues interactúan mediante otros gravitones y esto hace que se pierda la sencilla linealidad que presentan otras fuerzas. Esta cuestión es la causante de que la teoría cuántica de los gravitones no sea renormalizable.

Lo más asombroso es que, por lo que se sabe en otros casos similares de teorías no renormalizables, una explicación posible es que el gravitón no sea una partícula fundamental, sino que tenga componentes a una escala de distancias determinada por la intensidad intrínseca de la interacción gravitacional. Si esto es correcto, el gravitón revelaría sus componentes en la vecindad de al escala de Planck, la única magnitud con dimensiones de longitud que se puede formar con las tres constantes fundamentales de la física, c, h y G (unos 10-33 centímetros).

Para que nos hagamos idea de la dificultad a la que nos enfrentamos en la formulación de una teoría cuántica de la gravitación, a la distancia de Planck las fluctuaciones cuánticas cambian la estructura geométrica e incluso topológica del espaciotiempo, pudiendo crear agujeros incluso negros microscópicos, de ahí que sean tan importantes a esas distancias como los gravitones. Esta es la vieja idea de Wheeler, que habló de la estructura "espumosa" del espaciotiempo cuántico.

---Teoría de cuerdas y agujeros negros---

Otra vez nos encontramos con nuestros viejos amigos lo agujeros negros, ahora en forma microscópica como resultado de las fluctuaciones cuánticas a escalas de la distancia de Planck. Lo que hemos aprendido de ellos, pero sobre todo la teoría de cuerdas, o la idea de que las partículas que denominamos elementales son en realidad objetos extensos en una dimensión, cuerdas diminutas cuya dinámica esta especificada por sus modos de vibración: cada modo de vibración independiente representaría un tipo diferente de partícula. Esta teoría, básicamente muy sencilla en sus planteamientos iniciales, conduce a una estructura matemática de riqueza insospechada, cuya exploración por parte de físicos y matemáticos aún pertenece a las generaciones futuras.

Hay dos clases básicas de cuerdas, según sean cerradas sobre sí mismas o abiertas, con los extremos libres. Las cuerdas cerradas siempre tienen un modo de vibración que se puede identificar con el gravitón, mientras que las cuerdas abiertas siempre tienen un fotón. El resultado es que las cuerdas predicen la existencia de gravitación en el sector cerrado, y de interacciones del tipo de la interacción electromagnética en el sector abierto. Pero se ha descubierto que las cuerdas no son los únicos objetos fundamentales de la teoría, existen regiones singulares a las cuales las cuerdas abiertas estarían enganchadas, se conocen como D-branas: pueden ser objetos puntuales (D-partículas), tener una dimensión (D-cuerdas), dos dimensiones extendidas (D-membranas), etc.

Cuando las cuerdas o D-branas (generalizando) alcanzan un alto grado de excitación sobre su estado de mínima energía, se convierten en agujeros negros. Esto se entiende bastante bien a nivel cuantitativo gracias a un importante cálculo de Andrew Strominger y Cumrum Vafa, de la Universidad de Harvard, aunque sólo en el caso de agujeros negros con mucha simetría. En este caso el número de estados de un agujero negro, según los cálculos independientes (no cuerdísticos) de Bekenstein y Hawking, coincide con el de un sistema adecuado de D-branas.

---Espaciotiempo no conmutativo, el principio básico---

Como en el caso de la mecánica cuántica, en que el principio básico del que emanaba las propias relaciones de indeterminación de Heisenberg era la no conmutatividad entre posiciones y velociadades, la imposibilidad por principio de conocer ambas cantidades con total definición, en nuestro caso de una teoría de la gravitación cuántica se busca un principio de no conmutatividad puramente espaciotemporal. El tipo de estructura matemática necesaria fue descubierto por el matemático francés Alain Connes en los años ochenta, una geometría cuántica en la cual las coordenadas espaciales son matrices que no conmutan entre sí, en analogía exacta con las posiciones y velocidades de una partícula. De hecho ya se ha comprobado que las cuerdas abiertas poseen propiedades matemáticas que recuerdan esta geometría no conmutativa. Posteriormente se ha llegado a la conclusión de que las D-branas son los propios ladrillos del espaciotiempo: el espaciotiempo adquiere así una naturaleza granular a la escala de Planck, una especie de retículo de D-branas trenzadas mediante las cuerdas abiertas.

Una propiedad matemática tan elemental como es la no conmutatividad está en la base de lo que será la futura teoría de gravitación cuántica. Los retículos espaciales que sustituyen a las coordenadas no conmutan, es decir si X es el operador cuántico de la coordenada x e Y es el operador de la y, el producto XY es diferente al producto YX. Las coordenadas clásicas son simples números reales que por descontado son conmutables, pues da lo mismo multiplicar las coordenadas xy en ese orden o en el contrario yx. Esta diferencia tan abismal nos da una idea de la nueva complejidad necesaria para poder describir
 correctamente la realidad del espaciotiempo.

Reedición de un antiguo post, gracias amigos. Un abrazo.

2019/12/21

Extraña luz de agujero negro

Por su propia definición los agujeros negros son objetos que se supone que no emiten nada, y así sería si la física real coincidiera con la física clásica, pero la realidad cuántica deja resquicios de indeterminación capaces de alumbrar fenómenos paradójicos. De hecho, gracias al principio de incertidumbre, y a las fluctuaciones cuánticas que amparan dicho principio, se crean pares de partículas virtuales capaces de dar algo de luz a una criatura tan terrible y poderosa como un agujero negro, que todo lo absorbe. Esa luz, o radiación, lleva hasta los límites de las leyes físicas que conocemos un concepto aparentemente abstracto ligado al desorden y a la información de un sistema: la entropía del agujero negro.
Un agujero negro clásico engulliría todo lo que se le acercara, sin más, pero un agujero negro “tratado cuánticamente” permite que alguna de las partículas de los pares de partícula-antipartícula, que continuamente se están formando y desapareciendo debido al principio de incertidumbre, sea absorbida por el agujero dejando libre la otra cuya energía es expulsada al exterior y produce una radiación característica cuyo espectro es exactamente el que sería emitido por un cuerpo caliente (aquí, caliente es considerada la temperatura superior al cero absoluto ó 273,15 grados centígrados bajo cero).
Cuanto menor es la masa de un agujero negro, más alta es su temperatura, por tanto, a medida que el agujero negro pierde masa, su temperatura y el ritmo de emisión aumentan y con ello pierde masa con mayor rapidez. Se supone que cuando su masa se reduce lo suficiente el agujero negro desaparecerá en un tremendo estallido final.
Un agujero negro del que no salga nada (el caso clásico), ni presente al exterior ninguna manifestación cuando engulle materia con mucha entropía, sugiere una forma demasiado fácil de disminuir la entropía de la materia exterior al mismo. Conforme arrojáramos al agujero materia con gran entropía haríamos disminuir la entropía exterior. Serían agujeros por los que se “escaparía” el cumplimiento de la segunda ley de la termodinámica, la tendencia natural al aumento de entropía o desorden (ver nota final sobre la entropía). Desde el Bing Bang, una explosión en perfecto orden , la entropía total del Universo no ha dejado de crecer y así será hasta la llamada muerte térmica .
La extraña luz de los agujeros negros, bautizada como radiación de Hawking que fue quien la descubrió, devuelve desorden, entropía, a nuestro Universo que sigue degradándose sin remedio hasta su muerte final (la energía de la radiación calorífica es la energía más degradada). Sin esa tenue luz los agujeros negros engullirían, además de materia, desorden. El determinismo clásico los hace más negros pero menos reales… la realidad, por una vez, no es tan “negra” como la pintan.
Nota sobre la entropía
Un ejemplo sencillo nos ilustrará sobre el significado de la entropía. Supongamos un saquito lleno de monedas. Si las ordenamos sobre la mesa, todas juntas con la cara hacia arriba, hemos conseguido que el sistema tenga una entropía mínima (cero) que se corresponde con un máximo orden. Sólo existe un microestado asociado a esta configuración {todo caras}. Sería similar al orden que tiene una estructura cristalina a cero grados absolutos, sólo una configuración posible, máximo orden y entropía cero. Si volvemos a poner las monedas en el saquito, lo movemos bien, y las dejamos caer desordenadamente sobre la mesa el estado macroscópico que obtenemos está asociado a muchos estados microscópicos diferentes aleatorios. Cada vez que repitamos la operación obtendremos la misma sensación de desorden y nos será difícil distinguir la configuración actual de otra anterior. En este caso el valor de las configuraciones es máximo y por tanto también la entropía, y mínimo el orden. Este estado es similar al llamado equilibrio térmico de un sistema, el de máximo desorden al que tienden de forma natural todos los sistemas aislados a los que no se les aporta orden desde el exterior.

2019/11/07

El espín, el misterioso giro de las partículas cuánticas


En la física clásica las partículas como el electrón eran consideradas puntuales. Sin embargo, años antes de que en 1922 Stern y Gerlach realizaran un experimento que permitía deducir que los electrones tienen un momento magnético intrínseco (por giro sobre sí mismo) con sólo dos valores posibles, ya eran conocidas ciertas anomalías (efecto Zeeman anómalo) con relación al desdoblamiento de líneas espectrales esperado. Esto, por muy extraño que pareciera entonces, sólo podía ocurrir si los electrones giraban sobre sí mismos (observaciónal final del post) y no eran, por tanto, partículas puntuales. En 1926 los jóvenes físicos Goudsmit y Uhlenbeck propusieron la atrevida idea de que el electrón tiene un momento angular (o cinético) intrínseco (el espín), es decir, que la partícula gira "de alguna manera" sobre sí misma de modo que produce precísamente ese momento magnético anómalo observado.

La ecuación de Dirac:

Durante algún tiempo no se supo cómo incluir ese espín en la ecuación de ondas del electrón, hasta que Dirac trabajando para construir una teoría cuántica-relativista del electrón encontró, sin buscarlo, justamente el mismo campo magnético que surge del modelo de electrón con espín. En sus propias palabras: " No me interesaba incluir el espín en la ecuación de onda, ni siquiera consideré esa cuestión. Fue una gran sorpresa para mi descubrir después que el caso más simple ya implicaba el espín."

La obtención por Dirac de una ecuación que, partiendo de primeros principios, permite deducir el espín fue recibida con enorme expectación entre sus colegas en las navidades de 1927, antes de su publicación en los Proceedings of the Royal Society a principios de 1928. Esta ecuación proporcionaba la explicación de los niveles energéticos esperados para el átomo de hidrógeno (sus líneas espectrales : cada tipo de átomo emite un conjunto único de colores, estas líneas de color o líneas espectrales son la "firma" de los átomos).

El espín es un concepto puramente cuántico, realmente no un giro físico:

Estableciendo con precisión la teoría cuántica del momento cinético (o angular), se halla que los valores pueden ser múltiplos semienteros de h (+1/2h ó -1/2h). Esto que puede ser paradójico, pues sugiere la existencia de una acción menor que h o mínimo cuanto de acción, se resuelve precisamente introduciendo el concepto de espín (o momento cinético intrínseco). Mientras que el momento cinético orbital siempre es entero, el espín puede ser semientero.

El espín es un concepto puramente cuántico: clásicamente, el momento angular intrínseco de una partícula puntual sólo puede ser nulo (un punto no puede girar sobre sí mismo). Con relación a los campos cuánticos el espín está relacionado con el número de componentes del campo. siendo S es espín del campo, el número de componentes será igual a 2S+1. Así, un campo escalar es un campo de un componente, es decir, un operador definido en cada punto del espacio-tiempo, y un solo observable o magnitud medible de tipo escalar; los cuantos asociados son partículas de espín cero. Un campo vectorial, como el campo eléctrico, por ejemplo, es un campo de tres componentes: tres operadores en cada punto del espacio-tiempo (tres observables o magnitudes a medir asociadas cada una a un operador). Los cuantos asociados son partículas de espín 1. Las partículas de espín 1/2 son los cuantos de un campo de dos componentes o campo espinorial. Un campo tensorial es un campo de cinco componentes, como el gravitatorio; los cuantos asociados son partículas de espín 2, como el llamado gravitón.

Partículas de fuerza y partículas de materia:

Gracias a la ley de conservación del momento cinético, no hay problema de "semicuanto de acción": si, en una transición, el momento cinético es semientero en el estado inicial, lo es también en el estado final y, por tanto, toda interacción implica un múltiplo necesariamente entero del cuanto de acción. Esta ley de conservación del carácter semientero del momento cinético indica que las partículas de espín semientero encierran una propiedad, en cierto modo indestructible. De hecho, todas las partículas de materia, los fermiones, son partículas de espín semientero, mientras que los cuantos de los campos de interacción o fuerza, los bosones, son partículas de espín nulo o entero. Respecto a los fermiones, el principio de exclusión de Pauli manifiesta la impenetrabilidad de la materia. Mientras que dos o más bosones pueden estar en el mismo estado y la magnitud de la fuerza que representan aumenta, dos fermiones no pueden estar en el mismo estado a la vez según el principio de exclusión de Pauli. Los bosones son partículas de fuerza y los fermiones de materia.

El misterioso "giro" de las partículas cuánticas las convierte en fermiones o partículas de materia, o en bosones o partículas de fuerza. En partículas impenetrables o en partículas capaces de sumar su fuerza para dar mayor o menor intensidad a las interacciones de la materia.

Es recomendable leer el post:La extraña medida cuántica en un espacio de infinitas dimensiones: el espacio de Hilbert.
También el post sobre el condensado Bose-Einstein.

(**) Observación importante: En un principio la explicación lógica era pensar en un giro físico de las partículas que originaría el momento observado, pero la explicación correcta era la introducción de un número cuántico adicional con sólo dos valores posibles, +1/2 h y -1/2 h. Realmente el espín es una propiedad puramente cuántica que se manifiesta como un giro, con su momento correspondiente asociado. No es físicamente un giro de la partícula.


Nueva edición del post. Un abrazo amigos.

2019/10/10

Números primos, números de una sola pieza


Entre los números naturales 1, 2, 3 ,4 , 5, 6, 7, ,..., , n, existen unos números especiales que sólo son divisibles por la unidad y por ellos mismos. Estos números son llamados números primos y desde que se conocen han producido una extraña fascinación entre los matemáticos. Existen infinitos, Euclides realizó la primera demostración conocida de su infinitud alrededor del 300 a.C., pero su distribución, aparentemente aleatoria, sigue siendo una incógnita.

En cierta forma, estos números podríamos decir que son "de una pieza", y todos los demás números naturales se pueden construir a partir de ellos mediante un proceso llamado factorización. Los primeros números primos menores de cien son: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89 y 97. Cada uno de ellos sólo se puede escribir como: 2 = 2, 3 = 3,..., 29 = 29,..., 67=67, ..., etc. Mientras que el resto de números naturales necesitan expresarse en función de los números primos: 4 = 2x2, 9 = 3x3, 6 = 3x2, 8 = 2x2x2, ...,30 = 2x3x5, etc.


Se conoce una importante expresión llamada teorema de los números primos que nos da la cantidad de números primos que existen hasta un determinado número. Aproximadamente, para números suficientemente grandes, la expresión es:cantidad de números primos = (número)/Logaritmo Neperiano(número). Aplicando la fórmula para (número)=1000, obtenemos 145 primos, cuando en realidad hay 168. Para 5000 nos acercamos un poquito más, la expresión nos da 587 y en realidad existen 669, y conforme probamos números mayores nos acercamos más, aunque las cifras convergen muy lentamente: para 1000 el 86,3%, para 5000 el 87,7% y para 50000 el 90%.

Lagunas con ausencia de números primos:

Entre 1 y 100 existen 25 números primos, como hemos visto, y en la lista observamos grupos de números compuestos, una especie de lagunas con ausencia de números primos: del 24 al 28 y del 90 al 96. Entre el 100 y el 200 hay 23 primos: 101, 103, 107, 109, 113, 127, 131, 137, 139, 149,151, 157, 163, 167, 173, 179, 181, 191,193, 197, 199. Y encontramos lagunas como la del 182 al 190. Nos podemos preguntar si existen lagunas más grandes entre números primos. A simple vista, parece que no vamos a encontrar ninguna de estas lagunas de forma clara con una suficiente cantidad de números, pero no es así. Podemos encontrar tantas como queramos y de la longitud que deseemos, para ello utilizaremos la siguiente expresión (pueden encontrarse muchas más): n!+2 , desde 2 hasta n. Vamos a ver algunos ejemplos: para n=3, 3!=3x2x1=6; 6+2=8 y 6+3=9. Hemos encontrado la primera laguna formada por el 8 y el 9. Seguimos con n=4: 4!=4x3x2x1=24; 24+2=26, 24+3=27 y 24+4=28. Hemos encontrado tres números compuestos seguidos, pero con esta expresión podemos encontrar cuantos queramos, por ejemplo 101 números seguidos (al menos): 102!+2, 102!+3, 102!+3, ..., 102!+101,102!+102.

¿De cuántas piezas están hechos los números?

Volviendo al título del post, se pueden ver los números compuestos como formados por piezas de números primos. Un número compuesto cualquiera, por ejemplo, el 6 es igual al producto de dos números primos 2x3, podemos considerarlo como formado por dos piezas, la pieza 2 y la pieza 3. En cambio los números primos, como el 7, están formados por sólo una pieza. En un símil musical el número primo podría considerarse como armónico principal y único, y el número compuesto como una composición de armónicos primos que formarían su espectro o descomposición factorial.

Analizando la factorización de un número como producto de números primos, podríamos imaginar que cualquier número está formado por tantas piezas como factores primos lo componen. Se observa como curiosidad que los números del orden de 100 estarían formados, como media, por un producto de 2,7 números primos, los del orden de 1000 por un producto de 2,96 números primos, los de 10000 por un producto de 3,16 números, los de 100000 por 3,3, los de 1000000 por 3,42 y los de 10000000 por 3,64. Observamos que la cantidad de "piezas" necesarias para formar cualquier número aumentan muy lentamente, y ese aumento, además, decrece. Es un tanto asombroso que mientras un número de 3 cifras necesita tres primos para factorizarse (está hecho de tres piezas), uno de 10 cifras sólo necesita cuatro (está hecho de cuatro piezas). Claro que al hablar de piezas estas son tan dispares como el 3 y el 2000003, ambos son números primos.

En un extraño (e imaginario) mundo cuántico formado por números enteros, sería fácil descubrir los números primos. Todos los números compuestos se verían como una borrosa superposición de armónicos primos mientras que los números primos aparecerían claros y estables con una sola configuración fácilmente distinguible. Algo de esto debe le debe ocurrir a Daniel Tammet, un joven autista inglés con una sorprendente capacidad para los números. Cuando piensa en ellos ve formas, colores y texturas que le permiten distinguirlos de una manera asombrosa. Al multiplicar dos números ve dos sombras; al instante aparece una tercera sombra que se corresponde con la respuesta a la pregunta. Cuando piensa en algún número sabe reconocerlo como primo o compuesto. Estuve viendo el reportaje sobre su vida, sus facultades como matemático y su prodigiosa memoria. Sus capacidades son asombrosas. En una semana logró aprender, desde cero, suficiente islandés (un idioma catalogado como muy difícil) para mantener perfectamente una entrevista en la televisión de Islandia.

A alguien le podría parecer que el estudio de los números primos no tiene ninguna utilidad, desde luego se equivoca (ojo, el algoritmo de encriptación RSA nos permite las transacciones fiables). Cualquier saber matemático, por muy absurdo que nos parezca está relacionado con infinidad de campos aparentemente inconexos. Cualquier avance en el conocimiento sobre los números primos, por ejemplo, podría ser decisivo para resolver algún problema del campo más increible que se nos ocurra, tanto matemático como físico. La realidad es conexa y conforme la vamos comprendiendo vemos que el conocimiento que tenemos de ella también lo es.


Una novela sobre investigación de números primos:

Sobre los números primos recuerdo haber leído una novela interesantísima titulada "El tío Petros y la conjetura de Goldbach". La trama discurre a través de las vicisitudes de un matemático obsesionado por comprobar la famosa conjetura de Goldbach sobre los números primos, uno de los problemas abiertos más antiguos en matemáticas. Su enunciado es el siguiente: Todo número par mayor que 2 puede escribirse como suma de dos números primos. Confieso que logró atraparme al igual que le ha pasado a infinidad de lectores. Es muy entretenida y recomendable.

... Mi agradecimiento a la página Descartes, del Ministerio de Educación, que me ha facilitado los cálculos de factorización de grandes números que he necesitado.
... Recomiendo visitar esta magnífica página sobre números primos (en inglés).

Nuestro amigo Tito Eliatron nos envía dos interesantísimos enlaces de su blog a una charla del matemático, Medalla Fields, Terry Tao:Primera parte de la charlasegunda parte. Gracias Tito.

2019/09/19

Nota al margen, el tiempo y el espacio


Ni el espacio ni el tiempo son las dos entidades fundamentales que pensábamos, son emergentes y la entidad fundamental que los determina es cuántica y ligada a la causalidad...(Teoría cuántica de la gravedad).


Ayer y hoy, el tiempo

Ayer tenía 10 años, hoy tengo bastantes más. El tiempo pasa y pasa, no se detiene... Y aunque hay varios tipos de tiempo, el que nos interesa a nosotros, el de nuestro día a día, es implacable. 

Reloj, detalle de Dalí
El tiempo del mundo subatómico, el de las pequeñas partículas que forman todo nuestro universo está regido por la mecánica cuántica y sus extrañas leyes, el tiempo cósmico dominado por grandes masas y velocidades de vértigo se adelanta o atrasa según las propiedades del sistema en donde se mida. Las grandes velocidades o las inmensas masas lo afectan y lo disocian de unos sistemas a otros, según la relatividad general de Einstein. 

En nuestro mundo macroscópico un determinado suceso es seguido por otro, pero en el microcosmos dominado por la mecánica cuántica un sistema puede encontrarse en los dos estados a la vez y en muchos más estados de forma coherente. Precisamente esta extraña propiedad es la que hace tan potentes a los ordenadores cuánticos, capaces de resolver, en su día, procesos prácticamente imposibles para un superordenador clásico. 

Lástima que la coherencia cuántica y la coexistencia de diferentes estados (incompatibles) no sea posible en nuestro incoherente mundo, pero si en ese microcosmos es capaz de existir no perdemos la esperanza de poder entender mejor el tiempo y la manera de domesticarlo.


Mini entrelazada, el espacio
Mini no ha estudiado física, pero sabe de sobra lo que es el espacio. No tiene la agilidad ni la coordinación de movimientos de sus amigos, los otros gatitos del jardín, pero sabe muy bien dentro de sus limitaciones como moverse entre las plantas y los árboles, y donde está el lugar más fresco en verano o el lugar más caliente en invierno. La idea esencial que tenemos del espacio en el que transcurre nuestra vida cotidiana, y sus propiedades no difiere mucho de la idea que tiene Mini, pero en realidad lo que conocemos de él no deja de ser pura apariencia, por raro que nos parezca.
Gatita Mini
El espacio nos separa, observamos todo lo que nos rodea e identificamos diferentes objetos, animales o personas…Están separados en el espacio (y por el espacio), tienen identidades distintas. Pero esto que es evidente a nuestra escala no lo es tanto al nivel de los átomos y partículas que constituyen nuestra materia. A ese nivel, dos o más partículas, si se encuentran en un estado llamado de entrelazamiento cuántico tienen una misma función de onda que las determina como una única entidad: por mucha distancia que separe una partícula de otras entrelazadas con ella seguirán siendo una sola cosa, una sola realidad y lo que le ocurra a una de ellas tendrá una repercusión inmediata en las otras por muy separadas en el espacio que se encuentren Estamos hablando de partículas, de algo extremadamente pequeño, sin embargo, ya se ha observado en experimentos el entrelazamiento de millones de átomos.
Imaginemos que Mini tiene un precioso collar que le avisa cuando yo le voy a poner comida. Es un reloj formado por tres pequeñas piezas entrelazadas cuánticamente como un todo, una de las cuales es una especie de campanilla avisadora. En nuestro mundo no funcionaría así, pero en el microcosmos de la mecánica cuántica Mini podría quedarse con la pieza de la campanilla y las otras dos piezas podrían estar en Australia o en Pekín: el reloj seguiría funcionando como un único sistema y seguiría avisándole la campanilla dos veces al día, por la mañana y por la tarde noche, cada vez que yo le pongo comida.
El espacio, en esencia, no es realmente lo que nos parece. Si lo fuera, la mecánica cuántica no sería tan extraordinariamente extraña. Y no sólo eso, la otra gran teoría de la física, la teoría de la relatividad de Einstein, ya nos demostró que el espacio no permanece invariable como nos indicaba la mecánica clásica de Newton. El espacio no es invariable, se estira o se comprime dependiendo de las propiedades físicas de los sistemas en los que lo medimos. El espacio, desde luego, no es tal como se cree Mini, aunque a ella le importa bien poco.


2019/08/27

La bella teoría y la revista Espacio, sobre el Universo


Lecturas sobre el Universo:

Gracias a Carlos Martín, blogger de Novedades Científicas me enteré, con gran satisfacción, que la revista Espacio nos ha dedicado este mes de noviembre una reseña en el apartado Ciberespacio (página 20): "En esta bitácora se ofrece una ventana a todas las teorías que intentan explicar cómo es nuestro Universo y por qué es de esa manera. Su autor las desgrana de manera sencilla y también encuentra un hueco para comentar libros o noticias al respecto".




Junto a La bella teoría, se citan otros tres blogs científicos muy interesantes: Novedades CiéntíficasCurioso pero inútil y El Tamiz .


En los últimos meses he dedicado algunas entradas a temas relacionados directamente con el espacio. Aprovecho la ocasión para hacer un recordatorio. Se ha hablado del

Big Bang como una explosión en "perfecto orden", sobre
Las corrientes de estrellas,

El misterio de la matería-antimateria o sobre

"Antes" del Big Bang.

La muerte del universo,

Las estrellas como fuente de orden o baja entropía,

Los agujeros negros y su "pelo",

El universo elegante,

Los tres primeros minutos del universo,



Gracias a la revista Espacio y a los pacientes lectores.

2019/06/13

Sobre gravitación cuántica y agujeros negros

Algunas notas, casi al azar, sobre gravitación cuántica y agujeros negros
Sobre espacio-tiempo y paradigma holográfico:
Conforme avanza nuestro conocimiento sobre el universo aparecen más interrogantes, vuelven las eternas preguntas que se han hecho los filósofos de todos los tiempos, aunque la perspectiva ha cambiado sustancialmente. Los principios básicos que vislumbramos sobre la gravedad cuántica nos indican que el propio espacio-tiempo no es el fundamental, eterno e inmóvil referente que siempre hemos creído sino que emerge de una entidad fundamental discreta (no continua) y su propia geometría debe estar inextricablemente ligada a las relaciones causales entre sucesos.
Leer más...

.............................
Extraña luz de agujero negro:
Un agujero negro del que no salga nada (el caso clásico), ni presente al exterior ninguna manifestación cuando engulle materia con mucha entropía, sugiere una forma demasiado fácil de disminuir la entropía de la materia exterior al mismo. Conforme arrojáramos al agujero materia con gran entropía haríamos disminuir la entropía exterior. Serían agujeros por los que se “escaparía” el cumplimiento de la segunda ley de la termodinámica, la tendencia natural al aumento de entropía o desorden (ver nota final sobre la entropía). Desde el Bing Bang, una explosión en perfecto orden , la entropía total del Universo no ha dejado de crecer y así será hasta la llamada muerte térmica .


La extraña luz de los agujeros negros, bautizada como radiación de Hawking que fue quien la descubrió, devuelve desorden, entropía, a nuestro Universo que sigue degradándose sin remedio hasta su muerte final (la energía de la radiación calorífica es la energía más degradada). Sin esa tenue luz los agujeros negros engullirían, además de materia, desorden. El determinismo clásico los hace más negros pero menos reales… la realidad, por una vez, no es tan “negra” como la pintan.

Leer más...
..................

Dragones alados y agujeros negros:
Agujeros negros, agujeros de gusano, túneles en el espacio-tiempo, viajes en el tiempo, distorsión espacial y temporal, todos estos conceptos que parecen sacados de una novela de ciencia ficción, forman parte ya de la ciencia seria que se investiga en la actualidad, y no deja de ser una paradoja que la física, la ciencia más pura y dura, se ocupe de cuestiones, en otro tiempo, esotéricas. La materia a la que nos agarramos como lo más sólido, simple y real que tenemos se está convirtiendo, cada vez más, en algo lleno de misterio y complejidad. La física cuántica y la teoría de la relatividad general nos la presentan como algo siempre en movimiento que se confunde con el propio espacio y tiempo. Conforme tratamos de entender sus propias entrañas se nos aparece como formando una especie de entidad compleja que algún premio Nóbel no ha dudado en llamar: la materia-espacio-tiempo. Las extrañas criaturas que son los agujeros negros, con la curiosidad que han despertado entre los físicos, a comprender mejor el mundo que nos rodea. En cierta forma su negra belleza ha arrojado un rayo de luz sobre nuestro conocimiento del universo que nos cobija.



Leer más .........................

Antes del Big Bang, la espuma cuántica:

La mecánica cuántica nos prepara en cierta forma la mente para imaginar la creación del Universo a partir de una nada cuajada de fluctuaciones cuánticas pre-espaciotemporales. Ya en el Universo actual nos enseña que el vacío es un verdadero hervidero de creación y aniquilación de partículas virtuales que, a distancias del orden de Planck, se convierte en la llamada "espuma" cuántica del espacio-tiempo. En ella nada de lo que conocemos y nos es familiar cuenta pues entramos en los dominios de la desconocida, hasta ahora, gravedad cuántica.
Leer más ...

...................

Radiación de Hawking:
Conforme más sabemos de estas exóticas criaturas estelares, más nos sorprenden. Hemos descubierto que emiten radiación (llamada de Hawking) y no son tan negros como nos los pintaban; que el área de su horizonte de sucesos nos mide toda su entropía y nos delata la magnitud del desorden exterior que ha devorado, y que mueren en medio de un estallido de energía brutal. Parecía que nos lo querían esconder todo, y, sin embargo, nos cuentan cosas que sin ellos nunca habríamos sabido sobre el propio nacimiento del Universo y de su final, pues sus propiedades llevan años alumbrando la dirección que debemos tomar para descubrir la futura teoría de la gravedad cuántica: la llave del pasado y del futuro del Universo.

Leer más ...
................


Gravitación cuántica, distancia fundamental y teoría de cuerdas:
Una propiedad matemática tan elemental como es la no conmutatividad está en la base de lo que será la futura teoría de gravitación cuántica. Los retículos espaciales que sustituyen a las coordenadas no conmutan, es decir si X es el operador cuántico de la coordenada x e Y es el operador de la y, el producto XY es diferente al producto YX. Las coordenadas clásicas son simples números reales que por descontado son conmutables, pues da lo mismo multiplicar las coordenadas xy en ese orden o en el contrario yx. Esta diferencia tan abismal nos da una idea de la nueva complejidad necesaria para poder describir correctamente la realidad del espaciotiempo.

Leer más ...

Un abrazo amigos.