2016/06/19

Sobre la ciencia de la información cuántica


La ciencia de la información cuántica ha descubierto que el entrelazamiento o coherencia es, como la energía, un recurso cuantificable que posibilita tareas de procesado de información: algunos sistemas tienen un poco de entrelazamiento, otros mucho. Cuanto mayor sea el entrelazamiento disponible, más valdrá un sistema para el procesado cuántico de la información.

Esta ciencia es lo bastante nueva para que se esté aún intentando aprehender su auténtica naturaleza. Si llegamos a conocer los principios generales o leyes del entrelazamiento o coherencia cuántica sabremos interpretar la complejidad de los sistemas cuánticos.

La transición entre lo cuántico y lo clásico, en los sistemas complejos con muchas partes constituyentes, ocurre porque los grandes sistemas cuánticos interaccionan fuertemente con su entorno y sufren un proceso de decoherencia o pérdida del entrelazamiento que destruye las propiedades cuánticas del sistema. La clave para que un sistema complejo presente un comportamiento verdaderamente cuántico consiste en aislar muy bien el sistema del resto del mundo, de forma que se evite la decoherencia y se preserven los frágiles estados cuánticos. Conforme sea más complejo el sistema más difícil será aislarlo de las interacciones del medio y de hecho los grandes sistemas, practicamente todos los objetos que nos encontramos a nuestro alrededor por pequeños que sean, han perdido su coherencia cuántica y presentan un comportamiento puramente clásico. Como decía en el anterior post esa es la mayor dificultad a la hora de construir un ordenador cuántico, los qubits cuanto más sean tanto más difícil será mantener su coherencia y su funcionamiento cuántico.

Existen fenómenos que ofrecen ejemplos de sistemas cuánticos grandes bien aislados, entre ellos la superconductividad, el efecto Hall cuántico y el condensado de Bose-Einstein. Estos fenómenos demuestran que las reglas sencillas de la mecánica cuántica pueden dar lugar a principios emergentes que gobiernan comportamientos complejos.


El recurso fundamental en el tratamiento de la información cuántica es el qubit, objeto cuántico ideal que proviene de la mecánica cuántica. Sus propiedades son independientes del soporte físico sobre el que se trate, sea el espín de un núcleo atómico o de la polarización de un electrón. Cualquier objeto que tenga dos estados diferentes, necesariamente, poseerá además un conjunto de otros estados posibles conocidos como superposiciones, que incluyen ambos estados en grados distintos, tal como veíamos en el post anterior al definir el qubit. El continuo de estados entre el 0 y el 1 causa muchas de las extraordinarias propiedades de la información cuántica.

Los qubits individuales son interesantes, pero cuando se combinan varios entrelazándose aparece un comportamiento aún más fascinante. Estos estados entrelazados poseen propiedades fundamentalmente distintas de las que caracterizan a cualquier ente de la física clásica. Para Schrödinger, el del famoso gato, el entrelazamiento no era un rasgo característico, sino el rasgo carcterístico de la mecánica cuántica, el que la aparta por completo de las líneas de pensamiento clásicas.

Los objetos entrelazados se comportan como si estuvieran conectados entre sí, con independencia de lo alejados que se hallen el uno del otro, pues la distancia no atenúa lo más mínimo el entrelazamiento. Si se realiza una medición sobre un ente entrelazado con otros objetos, nos proporcionará a la vez información acerca de éstos. Sin embargo el entrelazamiento no vale para enviar señales más deprisa que la velocidad de la luz, pues la naturaleza probabilística de la mecánica cuántica desbarata tal posibilidad.


En 2001, Benjamin Schumacher, del Kenyon College, planteó que los elementos esenciales de la ciencia de la información, tanto clásica como cuántica, se resumían en un procedimiento que abarca tres etapas:
1. Identificar un recurso físico. Una cadena de bits o qubits codificados mediante objetos físicos reales (en nuestro caso los dos estados fundamentales de un átomo, o del spin de un electrón, por ejemplo, que pueden codificar un qubit).
2.Identificar una tarea de procesado de información que pueda realizarse gracias al recurso físico del paso (1).
3.Identificar un criterio que establezca cuándo ha tenido éxito la tarea del paso (2).

La pregunta fundamental de la ciencia de la información dice, pues:¿Cuál es la mínima cantidad de recurso físico (1) que necesitamos para realizar la tarea de procesado de información (2) cumpliendo el criterio de éxito (3)?.

En 1948 Claude E. Shannon resolvió el problema fundamental sobre la información clásica: ¿Cuál es el mínimo número de bits necesarios para almacenar la información producida por una fuente?. Sus trabajos fundaron la teoría de la información, y su expresión matemática del contenido de información recibe hoy el nombre de entropía de Shannon.La clave de nuestra nueva ciencia la tiene la calibración del entrelazamiento de los qubits(*). Las medidas cuantitativas del entrelazamiento están demostrando una enorme utilidad como conceptos unificadores en la descripción de una amplia gama de fenómenos. Podemos analizar el flujo de entrelazamiento, de un subsistema a otro, que se requiere para ejecutar un determinado proceso de información, de forma parecida a como estudiamos el flujo de energía entre distintas partes de un sistema, pues el entrelazamiento de un estado se puede transmitir a otro tal como fluye la energía.

Información y física:

Como ya pasó con la entropía termodinámica que se ha demostrado íntimamente relacionada con la cantidad de información soportada por un sistema físico, y que nos ha dado una referencia inestimable para estudiar la propia física de los agujeros negros, y con ellos para avanzar con la intrincada y aún no resuelta gravedad cuántica, el concepto de entrelazamiento en relación con el tratamiento de la información cuántica puede ayudarnos a desentrañar los secretos de la extraña mecánica cuántica. Algo tan etéreo como el concepto de la información parece estar íntimamente relacionado con las leyes más fundamentales de la física.

(*)El E-Bit estándar:

Cuando dos qubits están entrelazados, ya no tienen estados cuánticos individuales. En su lugar, se define una relación entre qubits. En un par de qubits máximamente entrelazado, los qubits dan resultados opuestos cuando se los mide. Si uno da 0, el otro da 1, y viceversa. Un par máximamente entrelazado tiene un "e-bit" de entrelazamiento, una especie de unidad de medida del entrelazamiento de un sistema cuántico.

Algo de "mágia" mecanico-cuántica:

- Si dos monedas pudieran estar "entrelazadas" como dos partículas cuánticas, cada par entrelazado daría el mismo resultado, aún cuando se lanzaran a años luz de distancia o en instantes muy diferentes: una moneda daría cara y la otra cruz.

Fenómenos Cuánticos. Investigación y Ciencia. Temas 31

Nueva edición de un antiguo post, dada la actualidad de la computación cuántica. Un abrazo amigos.

2016/06/06

Gravitación cuántica, distancia fundamental, y teoría de cuerdas

La teoría de la relatividad general de Einstein establece una relación directa entre la gravitación y la geometría del espaciotiempo. Esto supone que una teoría cuántica de la gravitación implicará una estructura cuántica del propio espaciotiempo. Y en esta estructura deberá jugar un papel importante una especie de "cuanto espacial", o mínima distancia de interacción. Un nuevo límite fundamental en la Naturaleza, similar a la velocidad de la luz o al cuanto de acción, ahora en la escala de las distancias.

Las dos grandes teorías físicas de las que disponemos, la relatividad general y la mecánica cuántica parecen no llevarse bien entre ellas. La relatividad general está formulada de una manera clásica y esa esencia choca con la formulación cuántica. De hecho, la aplicación directa de las reglas de la mecánica cuántica a la teoría de gravitación de Einstein da lugar a inconsistencias matemáticas. El camino más fácil es intentar formular una teoría cuántica de las ondas gravitacionales, o "arrugas" o vibraciones de la geometría espaciotemporal similares a las ondas electromagnéticas. Cuánticamente, se pueden ver como conjuntos coherentes de partículas, de la misma forma que una onda electromagnética es un conjunto coherente de fotones. Los equivalentes gravitacionales de los fotones se denominan gravitones.

---Distancia fundamental---

A medida que consideramos distancias cada vez menores, las interacciones entre gravitones producen cascadas de creación y aniquilación demasiado violentas, de tal forma que la delicada estructura que funcionaba para las demás partículas fracasa estrepitosamente para los gravitones. Existe una especie de realimentación en la interacción entre gravitones, pues interactúan mediante otros gravitones y esto hace que se pierda la sencilla linealidad que presentan otras fuerzas. Esta cuestión es la causante de que la teoría cuántica de los gravitones no searenormalizable.

Lo más asombroso es que, por lo que se sabe en otros casos similares de teorías no renormalizables, una explicación posible es que el gravitón no sea una partícula fundamental, sino que tenga componentes a una escala de distancias determinada por la intensidad intrínseca de la interacción gravitacional. Si esto es correcto, el gravitón revelaría sus componentes en la vecindad de al escala de Planck, la única magnitud con dimensiones de longitud que se puede formar con las tres constantes fundamentales de la física, c, h y G (unos 10-33 centímetros).

Para que nos hagamos idea de la dificultad a la que nos enfrentamos en la formulación de una teoría cuántica de la gravitación, a la distancia de Planck las fluctuaciones cuánticas cambian la estructura geométrica e incluso topológica del espaciotiempo, pudiendo crear agujeros incluso negros microscópicos, de ahí que sean tan importantes a esas distancias como los gravitones. Esta es la vieja idea de Wheeler, que habló de la estructura "espumosa" del espaciotiempo cuántico.

---Teoría de cuerdas y agujeros negros---

Otra vez nos encontramos con nuestros viejos amigos lo agujeros negros, ahora en forma microscópica como resultado de las fluctuaciones cuánticas a escalas de la distancia de Planck. Lo que hemos aprendido de ellos, pero sobre todo la teoría de cuerdas, o la idea de que las partículas que denominamos elementales son en realidad objetos extensos en una dimensión, cuerdas diminutas cuya dinámica esta especificada por sus modos de vibración: cada modo de vibración independiente representaría un tipo diferente de partícula. Esta teoría, básicamente muy sencilla en sus planteamientos iniciales, conduce a una estructura matemática de riqueza insospechada, cuya exploración por parte de físicos y matemáticos aún pertenece a las generaciones futuras.

Hay dos clases básicas de cuerdas, según sean cerradas sobre sí mismas o abiertas, con los extremos libres. Las cuerdas cerradas siempre tienen un modo de vibración que se puede identificar con el gravitón, mientras que las cuerdas abiertas siempre tienen un fotón. El resultado es que las cuerdas predicen la existencia de gravitación en el sector cerrado, y de interacciones del tipo de la interacción electromagnética en el sector abierto. Pero se ha descubierto que las cuerdas no son los únicos objetos fundamentales de la teoría, existen regiones singulares a las cuales las cuerdas abiertas estarían enganchadas, se conocen como D-branas: pueden ser objetos puntuales (D-partículas), tener una dimensión (D-cuerdas), dos dimensiones extendidas (D-membranas), etc.

Cuando las cuerdas o D-branas (generalizando) alcanzan un alto grado de excitación sobre su estado de mínima energía, se convierten en agujeros negros. Esto se entiende bastante bien a nivel cuantitativo gracias a un importante cálculo de Andrew Strominger y Cumrum Vafa, de la Universidad de Harvard, aunque sólo en el caso de agujeros negros con mucha simetría. En este caso el número de estados de un agujero negro, según los cálculos independientes (no cuerdísticos) de Bekenstein y Hawking, coincide con el de un sistema adecuado de D-branas.

---Espaciotiempo no conmutativo, el principio básico---

Como en el caso de la mecánica cuántica, en que el principio básico del que emanaba las propias relaciones de indeterminación de Heisenberg era la no conmutatividad entre posiciones y velociadades, la imposibilidad por principio de conocer ambas cantidades con total definición, en nuestro caso de una teoría de la gravitación cuántica se busca un principio de no conmutatividad puramente espaciotemporal. El tipo de estructura matemática necesaria fue descubierto por el matemático francés Alain Connes en los años ochenta, una geometría cuántica en la cual las coordenadas espaciales son matrices que no conmutan entre sí, en analogía exacta con las posiciones y velocidades de una partícula. De hecho ya se ha comprobado que las cuerdas abiertas poseen propiedades matemáticas que recuerdan esta geometría no conmutativa. Posteriormente se ha llegado a la conclusión de que las D-branas son los propios ladrillos del espaciotiempo: el espaciotiempo adquiere así una naturaleza granular a la escala de Planck, una especie de retículo de D-branas trenzadas mediante las cuerdas abiertas.

Una propiedad matemática tan elemental como es la no conmutatividad está en la base de lo que será la futura teoría de gravitación cuántica. Los retículos espaciales que sustituyen a las coordenadas no conmutan, es decir si X es el operador cuántico de la coordenada x e Y es el operador de la y, el producto XY es diferente al producto YX. Las coordenadas clásicas son simples números reales que por descontado son conmutables, pues da lo mismo multiplicar las coordenadas xy en ese orden o en el contrario yx. Esta diferencia tan abismal nos da una idea de la nueva complejidad necesaria para poder describir
 correctamente la realidad del espaciotiempo.

Reedición de un antiguo post del 2007. Un abrazo amigos.

2016/05/12

La extraña medida cuántica en un espacio de infinitas dimensiones: el espacio de Hilbert.


El espacio de Hilbert es una pura construcción matemática pero responde a la perfección a lo que hacía falta para elaborar la teoría cuántica. De no haberse descubierto habría habido que inventarlo para las necesidades de la teoría.

En teoría clásica las cantidades físicas a medir se asocian a simples números, cuyo producto es conmutativo: a*b= b*a . En mecánica cuántica dichas cantidades u observables se asocian a operadores(1) cuyo producto, por el contrario, no es necesariamente conmutativo. Mientras que la física clásica se desarrolla en el espacio ordinario, la mecánica cuántica lo hace en una generalización de este espacio ordinario llamado espacio de Hilbert. Esta generalización permite que operaciones matemáticas intuitivas y fácilmente visualizables en dos y tres dimensiones puedan extenderse a espacios de más dimensiones o, íncluso, a espacios con un número infinito de dimensiones.

Mientras que el espacio ordinario es un espacio vectorial métrico(2), en donde se definen vectores (que podemos identificar como flechitas más o menos largas y orientadas hacia cualquier dirección) como son las fuerzas o las velocidades, en el espacio de Hilbert que tiene infinitas dimensiones los vectores se generalizan como funciones. Las transformaciones que obran sobre los vectores del espacio convirtiéndolos en otros vectores del mismo espacio se llaman operadores(1) . Vectores y operadores tienen propiedades de linealidad: toda combinación lineal, de coeficientes complejos, de vectores es un vector; un operador transforma un vector en otro vector, y toda combinación lineal de vectores, también en un vector. El producto escalar de dos vectores asocia a estos dos vectores un número complejo que depende linealmente de cada uno de ellos. En el espacio ordinario de dos dimensiones si A(a1,a2) y B(b1,b2) son dos vectores, con sus dos coordenadas, el valor a1*b1 + a2*b2 sería el número que expresaría su producto escalar, en base al cual se establece la métrica (2) o la forma de medir en dicho espacio bidimensional.

El formalismo de la teoría cuántica se interesa, por una parte, por los estados del sistema físico y, por otra, por las magnitudes físicas observables relativas a este sistema. Los estados se asocian a los vectores de un espacio de Hilbert y los observables, a los operadores que actúan en este espacio. Un vector del espacio de Hilbert se llama vector propio de un operador cuando la acción de este operador sobre el vector consiste en multiplicarlo por un número llamado propio: (Operador_P) (vector_A) = a0 (vector_A) , siendo a0 el valor propio.

La expresión anterior representa una medida en un sistema cuántico. Al medir el estado del sistema representado por el vector_ A mediante el operador_P hemos encontrado el valor real a0, su valor propio, que corresponde a un observable del sistema representado por el operador. Este observable puede ser una medida de energía, de velocidad, de distancia, etc. El operador más importante de la teoría cuántica es el operador asociado a la energía total del sistema: el hamiltoniano. El total de los valores propios, u observables, del hamiltoniano se llama espectro del sistema. En un sistema atómico, el espectro comprende una serie discreta de valores propios, que se corresponden con los niveles de energía del átomo, nivel fundamental y niveles excitados.

La conmutación y no conmutación de los observables es una de las propiedades más interesantes de la teoría cuántica. Supongamos que dos observables no conmutan, como la posición "q" y el impulso "p", con sus operadores Q y P. Esto significa que no podemos medir el impulso en un estado en que se puede medir la posición, y viceversa. Esta es la expresión rigurosa de la desigualdad de Heisenberg también llamada Principio de Indeterminación.

En la mecánica cuántica una representación de un sistema se define por un conjunto completo de observables que conmutan, y proporciona toda la información susceptible de ser recogida sobre el sistema cuántico.

Lo nuevo respecto a la teoría clásica es que puede haber una segunda representación, es decir, un segundo conjunto completo de observables que conmutan, pero que no conmutan con los de la primera representación. Se dice entonces que las dos representaciones son complementarias. Dependiendo de las magnitudes que midamos (los observables elegidos) tendremos una representación u otra del sistema.

Algo de historia sobre el nacimiento de los espacios de Hilbert:

"¿Quién de nosotros no querría levantar el velo tras el que se esconde el futuro y asomarse, aunque fuera por un instante, a los próximos avances de nuestra ciencia y a los secretos de su desarrollo ulterior en los siglos futuros?".

Así comenzó David Hilbert (1862-1943) su intervención en el Congreso Internacional de Matemáticas celebrado en París en 1900. A continuación planteó 23 problemas que han modelado buena parte del desarrollo de las matemáticas en el siglo XX. Hace 102 años Hilbert era, en contraste con la situación de Einstein durante su annus mirabilis 1905 recién conmemorado, uno de los matemáticos con mayor prestigio y, probablemente, el más influyente.

Por aquellos años, el campo de estudio de Hilbert y sus colaboradores eran las ecuaciones integrales. Los estudiantes de secundaria aprenden que una ecuación es una igualdad entre dos expresiones matemáticas en las que hay un número desconocido, la incógnita, cuyo valor se puede calcular efectuando operaciones. En una ecuación integral la incógnita no es un número, sino una función -una gráfica- cuya fórmula se quiere conocer y que aparece en la ecuación dentro de una integral. En la serie de artículos Fundamentos de una teoría general de las ecuaciones integrales, Hilbert analizó las técnicas introducidas para estudiar estas ecuaciones por Poincaré y Fredholm a finales del XIX, mejorando sus resultados. En el cuarto artículo de esta serie, publicado en 1906, Hilbert prueba que las ecuaciones integrales pueden resolverse como un sistema de infinitas ecuaciones lineales con infinitas incógnitas.

En el bachillerato se estudian los sistemas de tres ecuaciones lineales con tres incógnitas: tres números ligados por las ecuaciones cuyo valor se desea calcular. Estos números se pueden ver como las coordenadas -largo, ancho y alto- de un punto en el espacio, lo que permite usar herramientas geométricas como ángulos y distancias para resolver el sistema. Lo que hizo Hilbert fue construir herramientas geométricas análogas para un espacio, llamado Espacio de Hilbert, en el que los puntos tienen infinitas coordenadas, no sólo las tres cotidianas.



Como curiosidad, sobre la medida del número de partículas en un estado de Fock:
De acuerdo con la mecánica cuántica el número de partículas de un sistema cuántico, en un estado físico totalmente general, no tiene por qué estar bien definido resultando posible al hacer una medida del número de partículas diferentes resultados. Sin embargo, en ciertos casos el sistema puede tener un estado físico peculiar en el que el número de partículas sí esté totalmente bien definido, los estados en los que eso sucede son precisamente los estados de Fock.


Reedición de un antiguo post. Un abrazo amigos.

2016/04/19

Leyes del caos, vida e inteligencia


La ciencia del caos, curiosamente, ha hecho una aportación trascendental para mejorar nuestra comprensión del mundo. Hasta ahora se creía que la vida y con ella la inteligencia eran puras casualidades pero ahora sabemos que la materia, ciega en el equilibrio, manifiesta potencialidades imposibles en otras condiciones alejadas del mismo siempre que haya la necesaria aportación de energía. Con las leyes que rigen nuestro no hubo más que esperar el tiempo necesario para que las estrellas crearan los átomos imprescindibles para la vida y ésta progresara, a través de organismos cada vez más sofisticados y adaptados al ambiente de forma más eficiente, permitiendo que apareciese la inteligencia en especies evolucionadas como la nuestra.


Si la vida y la inteligencia vienen impresas en las propias leyes que nos rigen la posibilidad de vida e inteligencia extraterrestres están aseguradas.Ilya Prigogine, recibió el premio Nobel de Química en el año 1977 por su aporte al conocimiento de las "estructuras disipativas" en el mundo físico, es decir, el estudio de la aparición del orden en condiciones alejadas del equilibrio. El término estructura disipativa busca representar la asociación de las ideas de orden y disipación. El nuevo hecho fundamental es que la disipación de energía y de materia, que suele asociarse a la noción de pérdida y evolución hacia el desorden, se convierte, lejos del equilibrio, en fuente de orden. Estas estructuras están en la base de la vida y en ellas el orden se establece en base a ecuaciones de evolución no lineal, de mucha mayor complejidad que cerca del equilibrio en donde las soluciones son mucho más simples y se pueden linealizar.

Potencialidad:
Lejos del equilibrio existen muchas soluciones, potencialidades que no existen cerca del equilibrio. Esta riqueza nos puede guiar mucho mejor para comprender fenómenos complejos como la historia del clima, de la Tierra y de la propia vida. Todo esto está ligado a una estructura de no equilibrio que era incomprensible desde una perspectiva antigua: el no equilibrio no es sólo degradación, sino también construcción. Ni el tiempo repetitivo de la mecánica ni el tiempo-degradación de la termodinámica clásica pueden explicar la riqueza del mundo tal como lo vemos. La naturaleza inventa. Nada es reversible. Y su dimensión temporal dista de agotarse en la concepción matemática de un tiempo absoluto, como la concepción abstracta de la mecánica clásica. En los sistemas sencillos no caóticos su atractor, una especie de representación de sus variables dinámicas, es una figura geométrica simple o un punto, mientras que en los caóticos son figuras de una complejidad extraordinaria llamados atractores extraños. De esa complejidad se pueden extraer infinitas posibilidades para la evolución futura del sistema.


Los mecanismos de organización en las estructuras disipativas sólo pueden aparecer cuando el medio externo mantiene, mediante la aportación energética, el sistema alejado del equilibrio. La estructura es creada y mantenida gracias al intercambio de energía con el exterior. Por eso las llamamos estructuras disipativas. En ciertas condiciones críticas externas, las ínfimas fluctuaciones naturales y constantes de un sistema pueden, en vez de atenuarse, amplificarse y arrastrar el sistema en una u otra dirección. La rama de la bifurcación que escogerá el sistema es imprevisible, pues el fenómeno es aleatorio y parece fruto del azar.

La segunda ley, orden y desorden:
En un sistema aislado, la segunda ley de la termodinámica nos enseña que el desorden, la entropía, aumenta irremediablemente, pero eso no impide que una parte de ese sistema con una aportación de energía y materia de su entorno aumente su orden y disminuya su entropía. La suma total de entropía sigue aumentando, pero esa parte del sistema se organiza a costa de aumentar el desorden a su alrededor. Esa es la historia esencial de los organismos vivos. Cuando las condiciones externas cambian y se vuelven extremas el organismo entra en crisis y aparecen fenómenos aleatorios de bifurcación que le dan opciones de supervivencia. El sistema elige una de las opciones que se adaptará mejor o peor a las nuevas condiciones. Si elige bien vuelve a encontrar un periodo de estabilidad regido por el orden, si vuelve a entrar en crisis volverá el desorden y la nueva elección.

Hasta Prigogine, la ciencia pensaba que la vida era una especie de casualidad, un raro fenómeno difícil de reproducir, pero con Prigogine hemos aprendido que la materia lejos del equilibrio manifiesta potencialidades imposibles en otras condiciones. La intuición de que era posible elaborar una termodinámica general de sistemas vivos o abiertos y de sistemas cerrados, aislados e inertes, le valio a Ilya Prigogine el Premio Nobel de Química.

Algo más sobre el caos:


Historia, dignidad y efecto mariposa.

Efecto mariposa, un atráctor extraño.

2016/03/24

Una propuesta sobre la energía oscura


A proposal on dark energy


Admitiendo una hipótesis fractal para la energía de las fluctuaciones cuánticas del vacío y suponiendo que dicha energía sea capaz de recubrir las 9 dimensiones espaciales sugeridas por la teoría de supercuerdas...la energía oscura parece emerger de forma natural.

Admitting a fractal hypothesis for the energy of the quantum vacuum fluctuations and assuming that this energy is capable of coating 9 spatial dimensions suggested by superstring theory ... dark energy seems emerge naturally.
Composición cosmológica. Wikipedia



Fractales, el espacio que son capaces de ocupar
Una curva geométrica clásica tiene una dimensión topológica igual a la unidad, pero una curva fractal es capaz de llenar una superficie (dimensión 2) o, incluso, un espacio (dimensión 3). En estos caso se dice que tiene dimensión 2 ó dimensión 3, pues la dimensión fractal nos indica la capacidad que tiene la curva de ocupar un espacio de mayor dimensión a su dimensión topológica .

El que una curva fractal, cuya dimensión topológica es la unidad, sea capaz de ocupar un espacio de  dimensión 3 sería similar al hecho de que la energía del vacío de las fluctuaciones cuánticas (dimensión 3) fueran capaces de ocupar un espacio hipotético de 9 dimensiones (el sugerido por la teoría de supercuerdas). De hecho, la dimensión fractal relativa sería en los dos casos igual a 3.

Un fractal clásico, el movimiento browniano
Y hablando del espacio que es capaz de llenar un fractal, es interesante resaltar la dimensión fractal de un movimiento totalmente aleatorio en el espacio: el llamado movimiento browniano.
Dado que es capaz de cambiar aleatoriamente de dirección y explorar a lo largo de los tres ejes, podríamos aventurar que este tipo de movimiento llegaría  a recubrir un espacio de tres dimensiones, pero no es así. El movimiento browniano tiene dimensión fractal 2 y sólo sería capaz de llenar una superficie, no un plano.

Este movimiento goza de una propiedad muy curiosa. Imaginemos que medimos la distancia que es capaz de alejarse de un determinado punto; descubriremos que si se han dado n2 pasos, la distancia efectiva recorrida sólo será de n pasos. Es decir, la distancia total recorrida es igual a la distancia efectiva elevada a un factor de 2, que es precisamente su dimensión fractal. Esa misma propiedad es posible generalizarla a fractales de dimensión topológica mucho mayor que 1 si son continuos y, razonablemente, isótropos. Precisamente en estos casos la dimensión fractal relativa actúa de la misma forma que la dimensión fractal en las curvas.Volviendo al caso del movimiento browniano, la distancia efectiva está tomada en una dimensión (la línea recta) mientras que la distancia total recorrida está medida sobre el fractal, en las dos dimensiones que es capaz de recubrir.

Aplicando todo esto a la energía de las fluctuaciones del vacío
Si, con lo visto hasta ahora, nos centramos en la energía de las fluctuaciones cuánticas del vacío y suponemos que es capaz de recubrir las 9 dimensiones hipotéticas, que nos plantea la teoría de supercuerdas, encontraremos que la “energía total” es la “energía efectiva” elevada al cubo:  Energ. total = (Energ. efectiva)3  

La energía que hemos llamado “efectiva” es la energía de las fluctuaciones cuánticas del vacío en nuestras 3 dimensiones espaciales y depende del inverso de la distancia. A las distancias de nuestra vida cotidiana esa energía es completamente despreciable, pero conforme disminuyen éstas llega a hacerse significativa, hasta llegar a la llamada energía de Planck que se corresponde con la menor distancia posible llamada longitud de Planck (1,616199 x 10-35  metros). La energía que hemos llamado “total” sería la tomada en las 9 dimensiones hipotéticas. Si llamamos a “n” la distancia, la energía efectiva sería del orden de 1/n y la energía total sería una cantidad  que guarde la misma relación con 1/n que la relación (n3/n). El valor que encontramos es “n”. Es decir la energía “total” será proporcional a la distancia, no al inverso de la misma.                                              

(Ir a (+)Observaciones para entender mejor el hecho de aplicar la proporcionalidad de la relación (n3/n))



Conclusiones
Considerando la hipótesis fractal para la energía de las fluctuaciones cuánticas del vacío y que dicha energía sea capaz de recubrir el espacio de 9 dimensiones sugerido por la teoría de supercuerdas, ¡¡¡ encontramos una energía asociada a estas 9 dimensiones que coincidiría en magnitud con la llamada energía oscura!!! Una energía proporcional a la distancia, a diferencia de la energía de las fluctuaciones del vacío cuántico que es inversamente proporcional, capaz de mantener la aceleración expansiva del universo.







(+)Observaciones. Relación necesaria entre números naturales para averiguar la dimensión fractal.
Curva_Koch.png
Curva de Koch

Observamos en la figura la construcción de un fractal clásico llamado curva de Koch. La distancia en línea recta (en una dimensión) entre el extremo  A y el extremo E mide 3 segmentos, la distancia sobre el fractal entre A y E (a través de las dos dimensiones del plano) mide 4. Estas medidas son las que determinan la dimensión fractal de la curva: (log 4)/(log 3).

Imaginemos que al medir en línea recta el segmento AE encontramos un valor fraccionario, por el tipo de unidad de medida utilizada, por ejemplo 1/4. Con esa misma unidad de medida la distancia recorrida sobre el fractal sería de 1/3. Al tratar de hallar ahora su dimensión fractal haríamos el cociente: (log 1/3)/(log 1/4) y el resultado sería distinto, lo que resulta absurdo. Tenemos que encontrar la misma relación entre los dos segmentos pero expresada en números naturales. La encontramos al dividir estas dos fracciones:
1/3:1/4 = 4/3 , y el resultado 4 y 3 es el que buscamos.

En el caso de la proporción directa utilizada más arriba, con 1/n  y la relación (n3 / n) hemos hecho lo mismo. Podemos utilizar relaciones de proporcionalidad entre los segmentos, para tratar de encontrar una sencilla relación entre números naturales, aunque lógicamente, no las podremos utilizar entre los logaritmos de dichos segmentos. Abundando sobre el tema podéis leer este documento y ver este post.

2016/03/02

Las dimensiones extras. ¿Podemos demostrar que existen dimensiones enrolladas?


LHC

Según la teoría de supercuerdas en nuestro mundo existirían nada menos que 10 dimensiones, una dimensión temporal y  9 dimensiones espaciales. De estas dimensiones espaciales 3 serian las dimensiones ordinarias, que conocemos, y las otras 6 estarían enrolladas sobre sí mismas, alrededor de una distancia mínima llamada distancia de Planck, por lo que no serian observables.

Se han diseñado experimentos para tratar de descubrirlas en base a resultados anómalos sobre la atracción gravitatoria de masas a distancias microscópicas o  en  la violación de la conservación de la energía en colisiones en los aceleradores de partículas. También existe la posibilidad de que los mapas, cada vez más detallados, de la energía cósmica liberada en el Big Bang nos indiquen la huella de las dimensiones extras.

Pero puede que exista otra posibilidad de demostrar la existencia de dimensiones extra. Vamos a estudiar un curioso fenómeno que se da en sistemas fractales con un número grande de dimensiones. Partiendo de la hipótesis de que la energía de las fluctuaciones cuánticas del vacío tienen una estructura fractal, este fenómeno nos presentaría las dimensiones extra de una forma natural.

LHC

La dimensión fractal

La característica más especial de los fractales es su dimensión. Siempre es positiva y superior a su dimensión topológica. En cierta manera, de forma intuitiva nos indica la dimensión del espacio que son capaces de ocupar. Una cuartilla es un ejemplo de objeto de dimensión topológica 2, pero si la
arrugamos conseguimos que ocupe un espacio de mayor dimensión, entre 2 y 3 (normalmente fraccionario). Lo mismo ocurre con una línea (dimensión 1) que si la hacemos lo suficientemente intrincada e irregular es capaz de ocupar un plano (dimensión 2) e incluso un espacio (dimensión 3). Si la línea llega a ocupar el plano su dimensión fractal será 2 y si ocupa el espacio tridimensional, su dimensión fractal será 3. Conforme mayor sea su dimensión fractal, más intrincado e irregular será el fractal: a su dimensión topológica se le suma un coeficiente dimensional que completa el valor de su dimensión. Este coeficiente, normalmente fraccionario, nos indica el grado de irregularidad del fractal.
Dimensiones enrolladas
Dependencia espacial en los fractales

La líneas fractales gozan de una característica notable con relación a su dependencia espacial: una línea fractal capaz de recubrir el plano, para alejarse de cualquier punto arbitrario una distancia efectiva L debe recorrer una distancia media L2. A otra línea fractal capaz de llenar el espacio le ocurre algo similar: para alejarse de cualquier punto arbitrario una distancia efectiva L, deberá recorrer, como media, una distancia total L3. Es decir, el valor de los exponentes 2 y 3 se corresponde con las dimensiones fractales de las líneas.
Sabiendo la dimensión del fractal podemos calcular su dependencia espacial y a la inversa. Lo que ocurre con las curvas fractales (dimensión topológica 1) lo podemos generalizar a cualquier estructura fractal con mayor dimensión topológica (siempre que sea continua y razonablemente isótropa), dividiendo su dimensión fractal por su dimensión topológica.
Reducimos así la dispersión de resultados y encontramos más fácilmente símiles con ejemplos sencillos como trayectorias unidimensionales. A este cociente le llamaremos dimensión fractal relativa:

Dim. frac. relativa = (dimens. topológica+ coef. dimensional )/(dimens. topológica).
                                                     Dfr= (d+e)/d

En nuestro caso conocemos que la energía asociada al vacío depende inversamente de la distancia (L-1). Si fuera una simple línea (dimensión 1) encontraríamos que su dimensión fractal sería -1, pero como la energía es una magnitud tridimensional su dimensión fractal será -3, lo que obedece a un coeficiente dimensional negativo e igual a -6.

Tanto la dimensión fractal como el coeficiente dimensional negativos son resultados anómalos que obedecen a una causa sorprendente que estudiaremos a continuación. Siempre en base a la hipótesis fractal de las fluctuaciones que hemos planteado.
Volvamos a fijarnos en una simple hoja de papel que supondremos de espesor despreciable. Si la arrugamos estamos “fabricando” un fractal con dimensión mayor de 2 y menor de 3, es decir estamos sumando a su dimensión topológica un factor dimensional tanto mayor cuanto más intrincado sea su arrugamiento. ¿Pero qué ocurre si sobre la hoja lisa, sin arrugar, realizamos la operación de enrollarla sobre uno de sus extremos de la forma más fina posible?: A su dimensión topológica 2 le habremos restado una de sus dimensiones. En cierta forma, estamos realizando una operación con resultados opuestos al arrugamiento. En un caso se suma un factor dimensional y en el otro se resta.
Si sobre la expresión de la dimensión fractal relativa aplicamos la siguiente transformación de resta de dimensiones, que llamaremos T:

T: Valor (dimens. topológica) --> Valor (dimens. topológica – coef. dimensional),
                                                  T: (d) --> (d-e)

obtenemos la siguiente expresión para un universo con el mismo valor de dimensiones enrolladas que de coeficiente dimensional:


Dim. fractal relativa = (dimens. topológica)/(dimens. topológica – coef. dimensional).
                                                     Dfr= d/(d-e)

Si a esta expresión le igualamos el valor (-1) encontramos que el resultado anómalo obtenido se correspondería al de un universo con 6 dimensiones enrolladas y con un factor dimensional, también, de 6 (d= dimensión topológica=3).


Un poco más sobre el tema, visto de otra forma.