Mostrando entradas con la etiqueta coherencia cuantica. Mostrar todas las entradas
Mostrando entradas con la etiqueta coherencia cuantica. Mostrar todas las entradas

2007/12/05

Coherencia y computación mecanico-cuántica

La computación mecanico-cuántica se basa en una propiedad misteriosa de la mecánica cuántica: la coherencia cuántica. En un ordenador actual la información se codifica en ceros (0) y unos (1). El estado de un bit (unidad mínima de información) sólo puede encontrarse en (1) o en (0).

Explicación del QUBIT:

En un ordenador cuántico la unidad mínima de información es el qubit, un estado entrelazado, mezcla de los dos estados a la vez, de forma coherente.


Para visualizarlo (observar el dibujo y pinchar) podemos imaginar una esfera, en el polo norte situariamos el (1) y en el polo sur el (0) : el qubit representaría cualquier punto de la esfera como una combinación de los dos estados a(0) + b(1). El (0) y el (1) constituirían lo que en música son los tonos puros musicales, en cambio, una superposición de (0) y (1) sería un acorde.



La potencia de la computación cuántica se basa en la coherencia o superposición que permite un efecto de paralelismo : Colocamos todos los qubits de entrada en una superposición coherente de ceros y unos. Si hacemos pasar esta entrada a través de un circuito lógico que ejecute un determinado cómputo, el resultado es una superposición de todos los posibles resultados de ese cómputo: la computadora efectúa a la vez todos los cómputos posibles.

Símil musical:
Una computadora cuántica que realice un cómputo ordinario, en el que no haya superposición de bits, genera una secuencia de ondas (mecanico-cuánticas) análogas al sonido de un "cambio de repique" de los campanarios, en que las campanas se tañen una por vez. Un cómputo realizado en modo cuántico paralelo viene a ser como una sinfonía, su sonido corresponde a una multitud de ondas que se interfieren entre sí.


Los dispositivos físicos que se podrían utilizar para procesar la información serían partículas individuales como átomos, moléculas, fotones, etc. Cualquier partícula o partículas de tamaño atómico o subatómico capaz de contar, al menos, con dos estados que pueden identificarse con los valores de un bit. En el caso del átomo se podrían utilizar dos de sus niveles energéticos. De forma natural este átomo presentaría un estado enlazado o coherente de estos dos estados constituyendo la mínima unidad de información cuántica o QUBIT.


Mientras que en un procesador clásico la entrada se verifica con N bits y solamente se pueden representar y procesar, cada vez, una de las posibles combinaciones de los mismos, en un computador cuántico con N qubits se podrían manejar en forma simultánea la combinación coherente o superpuesta de todos los posibles valores 2N . En un procesador actual se necesitaría repetir
2N veces la misma operación o utilizar 2N procesadores en paralelo.


En 1994 Peter W. Shor de AT&T se dio cuenta de cómo sacarle partido a los fenómenos de coherencia y superposición cuántica para descomponer un entero en sus factores primos. Descubrió que un ordenador cuántico podría realizar la tarea de un modo muchísimo más veloz que cualquier ordenador clásico. Para hacernos una idea, mientras que un ordenador o superordenador actual tardaría varios miles de millones de años en factorizar un número de unos 1000 dígitos, un ordenador cuántico tardaría unos 20 minutos. Teniendo en cuenta que los sistemas de encriptación basan su seguridad en la dificultad de descomponer en primos números muy grandes, es fácil entender que el algoritmo de Shor para computación cuántica sacudió los cimientos del mundo de la economía electrónica.


En la búsqueda aleatoria de N elementos en una base de datos,
también es evidente la ventaja de un ordenador cuántico. Mientras que uno clásico logra el resultado en N/2 intentos, otro cuántico lo consigue en N1/2 intentos. En 1 000 000 elementos el clásico conseguirá resultados en 500 000 intentos mientras que el cuántico lo hará en 1000.

Pero la construcción de ordenadores cuánticos es sumamente difícil, porque los estados de coherencia y superposición cuánticos son de una fragilidad superlativa. Pueden quedar destruidos por las más diminutas interacciones con el medio circundante. Este es el gran caballo de batalla en el camino para conseguir el ordenador cuántico. (Continuará en próximos posts)




2006/10/22

Premio Príncipe de Asturias de Investigación Científica


El físico español Juan Ignacio Cirac Sasturain, que dirige el departamento de óptica cuántica del Instituto Max Planck de Alemania(*), ha sido galardonado con el Premio Príncipe de Asturias de Investigación Científica. Nacido en 1965, se convierte en el ganador más joven en esta categoría.

Cirac Sasturain, natural de la localidad barcelonesa de Manresa, llegó a las últimas votaciones junto a las candidaturas conjuntas de los biólogos Ginés Morata y Peter Lawrence y de los químicos Avelino Corma y James Fraser Stoddar, a las que se impuso finalmente.

En el acta del jurado, presidido por el bioquímico Julio Rodríguez Villanueva, se le hace merecedor del premio "por su liderazgo mundial en la propuesta y desarrollo de la información cuántica, una nueva ciencia del siglo XXI que surge de combinar dos de las creaciones más notables de la ciencia del XX". Es decir, "de un lado la física cuántica, que explica el comportamiento de la materia a nivel atómico y subatómico, y del otro la teoría de la información, que describe el procesado, almacenamiento y transmisión de datos".

Añade que "el profesor Cirac es un referente internacional que ha producido algunas de las ideas más originales y brillantes tanto en el campo de la información cuántica como en el de la teoría cuántica de la luz y la física atómica". ( En la figura, qubits en nanotubo de carbono)

El jurado concluye señalando que "sus contribuciones están siendo decisivas para el desarrollo de comunicaciones completamente seguras, gracias a métodos de cifrado cuántico ( encriptación cuántica), y para la construcción de ordenadores potencialmente capaces de realizar en segundos cálculos que sobrepasan los límites actuales de la supercomputación" ( computación cuántica/ paralelismo cuántico) .

La computación mecanico-cuántica se basa en una propiedad misteriosa de la mecánica cuántica : la coherencia cuántica. En un ordenador actual la información se codifica en ceros (0) y unos (1). El estado de un bit ( unidad mínima de información) sólo puede encontrarse en (1) o en (0).

En un ordenador cuántico la unidad mínima de información es el qubit, un estado entrelazado, mezcla de los dos estados a la vez, de forma coherente. Para visualizarlo podemos imaginar una esfera, en el polo norte situariamos el (1) y en el polo sur el (0) : el qubit representaría cualquier punto de la esfera como una combinación de los dos estados a(0) + b(1). ( El (0) y el (1) constituirían lo que en música son los tonos puros musicales, en cambio, una superposición de (0) y (1) sería un acorde).

La potencia de la computación cuántica se basa en la coherencia que permite un efecto de paralelismo : Colocamos todos los qubits de entrada en idéntica superposición de ceros y unos, todos iguales. La computadora se encuentra entonces en otra superposición de todas las entradas posibles. Si hacemos pasar esta entrada a través de un circuito lógico que ejecute un determinado cómputo, el resultado es una superposición de todos los posibles resultados de ese cómputo: la computadora efectúa a la vez todos los cómputos posibles.

Símil musical: Una computadora cuántica que realice un cómputo ordinario, en el que no haya superposición de bits, genera una secuencia de ondas ( mecanico-cuánticas) análogas al sonido de un "cambio de repique" de los campanarios, en que las campanas se tañen una por vez. Un cómputo realizado en modo cuántico paralelo viene a ser como una sinfonía, su sonido corresponde a una multitud de ondas que se interfieren entre sí.

(*) La buena noticia es que tengamos científicos de esta talla, la mala noticia es que no trabajen en España. La endogamia de nuestra Universidad, seguro que no ayuda a solucionar el problema.
Fuentes: Agencia EFE y Revista Investigación y Ciencia TEMAS 10: "Misterios de la física cuántica" (4º trim.1997)

2006/09/08

El experimento más bello














Pensando en el experimento de la doble rendija sobre la dualidad onda–partícula, me puse a buscar y encontré esta página sobre los diez experimentos más bellos votados por los lectores de la revista Physics World. Su belleza lo es en el sentido clásico: la simplicidad del aparato como la simplicidad lógica del análisis parecen tan inevitables y puras como las líneas de un monumento griego.

Transcribo su descripción para después añadir algo más sobre el mismo: “La dualidad onda-partícula de la naturaleza es el principio fundamental de la física cuántica. De acuerdo a esta dualidad, un pedazo de materia (un electrón, por ejemplo) se comporta a veces como si estuviese en un sólo lugar a la vez, como una partícula, y otras veces como si estuviese en varios lugares al mismo tiempo, como una ola en el mar. En 1927 la naturaleza ondulatoria de los electrones fue establecida experimentalmente mediante la observación de un patrón de difracción (un fenómeno característico de la propagación de ondas) al pasar un haz de electrones a través de un cristal de níquel. Para explicar la idea de la dualidad en términos simples, los físicos frecuentemente usaban un experimento imaginario. En este experimento se hacía incidir un haz de electrones sobre una placa provista de dos rendijas próximas y se observaba qué pasaba sobre una pantalla detectora colocada detrás de las rendijas sobre la cual cada electrón producía un punto luminoso al chocar. Si los electrones se comportasen como partículas al pasar por las rendijas el patrón esperado en la pantalla sería el de dos franjas luminosas, cada una de ellas imagen de una de las rendijas. Sin embargo, de acuerdo a la física cuántica, el haz electrónico se dividiría en dos y los haces resultantes interferirían uno con otro, formándose en la pantalla un curioso patrón de bandas oscuras y luminosas. Fue recién en 1961 cuando alguien (Claus Jönsson de Tübingen, Alemania) llevó a cabo el experimento en el mundo real y comprobó que nuestra realidad es cuántica.”

Si situamos un detector en cualquiera de las rendijas, y hacemos pasar electrón a electrón, no se producirá el patrón de bandas oscuras y luminosas, pero si dejamos libres las dos rendijas, incluso pasando electrón a electrón, obtenemos el patrón de la figura.

Cuando hacemos pasar electrón a electrón, de los dos estados clásicos posibles : (pasar por ranura 1) , (pasar por ranura 2), donde cada uno excluye al contrario , la realidad cuántica ( y verdadera) del electrón se obtiene de los dos estados cuánticos puros (pasar por ranura 1) y (pasar por ranura 2) con sus correspondientes pesos p1 y p2 : (p1) (pasar por ranura 1) + (p2)(pasar por ranura 2) . Sin interferencia externa, la realidad del electrón es que pasa por los dos agujeros a la vez . Su onda asociada pasa, a la vez , por las dos rendijas y la diferencia de fase de las dos ondas, del mismo electrón, es la que produce la interferencia.

En la esfera de Poincaré, el polo superior sería el estado puro (pasar por ranura 1) y el polo inferior el estado puro (pasar por ranura 2). La realidad es una suma de los dos estados, a la vez, que puede ser cualquier punto de la esfera, dependiendo de los pesos p1 y p2.Esos estados están en una superposición que se llama coherente, entrelazada.