Mostrando entradas con la etiqueta agujero negro. Mostrar todas las entradas
Mostrando entradas con la etiqueta agujero negro. Mostrar todas las entradas

2016/06/30

Algunas notas, casi al azar, sobre gravitación cuántica y agujeros negros


Sobre espacio-tiempo y paradigma holográfico:
Conforme avanza nuestro conocimiento sobre el universo aparecen más interrogantes, vuelven las eternas preguntas que se han hecho los filósofos de todos los tiempos, aunque la perspectiva ha cambiado sustancialmente. Los principios básicos que vislumbramos sobre la gravedad cuántica nos indican que el propio espacio-tiempo no es el fundamental, eterno e inmóvil referente que siempre hemos creído sino que emerge de una entidad fundamental discreta (no continua) y su propia geometría debe estar inextricablemente ligada a las relaciones causales entre sucesos.
Leer más... 

.............................
Extraña luz de agujero negro:
Un agujero negro del que no salga nada (el caso clásico), ni presente al exterior ninguna manifestación cuando engulle materia con mucha entropía, sugiere una forma demasiado fácil de disminuir la entropía de la materia exterior al mismo. Conforme arrojáramos al agujero materia con gran entropía haríamos disminuir la entropía exterior. Serían agujeros por los que se “escaparía” el cumplimiento de la segunda ley de la termodinámica, la tendencia natural al aumento de entropía o desorden (ver nota final sobre la entropía). Desde el Bing Bang, una explosión en perfecto orden , la entropía total del Universo no ha dejado de crecer y así será hasta la llamada muerte térmica .

La extraña luz de los agujeros negros, bautizada como radiación de Hawking que fue quien la descubrió, devuelve desorden, entropía, a nuestro Universo que sigue degradándose sin remedio hasta su muerte final (la energía de la radiación calorífica es la energía más degradada). Sin esa tenue luz los agujeros negros engullirían, además de materia, desorden. El determinismo clásico los hace más negros pero menos reales… la realidad, por una vez, no es tan “negra” como la pintan.

Leer más...
..................

Dragones alados y agujeros negros:
Agujeros negros, agujeros de gusano, túneles en el espacio-tiempo, viajes en el tiempo, distorsión espacial y temporal, todos estos conceptos que parecen sacados de una novela de ciencia ficción, forman parte ya de la ciencia seria que se investiga en la actualidad, y no deja de ser una paradoja que la física, la ciencia más pura y dura, se ocupe de cuestiones, en otro tiempo, esotéricas. La materia a la que nos agarramos como lo más sólido, simple y real que tenemos se está convirtiendo, cada vez más, en algo lleno de misterio y complejidad. La física cuántica y la teoría de la relatividad general nos la presentan como algo siempre en movimiento que se confunde con el propio espacio y tiempo. Conforme tratamos de entender sus propias entrañas se nos aparece como formando una especie de entidad compleja que algún premio Nóbel no ha dudado en llamar: la materia-espacio-tiempo. Las extrañas criaturas que son los agujeros negros, con la curiosidad que han despertado entre los físicos, a comprender mejor el mundo que nos rodea. En cierta forma su negra belleza ha arrojado un rayo de luz sobre nuestro conocimiento del universo que nos cobija.



Leer más ...
......................

Antes del Big Bang, la espuma cuántica:

La mecánica cuántica nos prepara en cierta forma la mente para imaginar la creación del Universo a partir de una nada cuajada de fluctuaciones cuánticas pre-espaciotemporales. Ya en el Universo actual nos enseña que el vacío es un verdadero hervidero de creación y aniquilación de partículas virtuales que, a distancias del orden de Planck, se convierte en la llamada "espuma" cuántica del espacio-tiempo. En ella nada de lo que conocemos y nos es familiar cuenta pues entramos en los dominios de la desconocida, hasta ahora, gravedad cuántica.
Leer más ...

...................

Radiación de Hawking:
Conforme más sabemos de estas exóticas criaturas estelares, más nos sorprenden. Hemos descubierto que emiten radiación (llamada de Hawking) y no son tan negros como nos los pintaban; que el área de su horizonte de sucesos nos mide toda su entropía y nos delata la magnitud del desorden exterior que ha devorado, y que mueren en medio de un estallido de energía brutal. Parecía que nos lo querían esconder todo, y, sin embargo, nos cuentan cosas que sin ellos nunca habríamos sabido sobre el propio nacimiento del Universo y de su final, pues sus propiedades llevan años alumbrando la dirección que debemos tomar para descubrir la futura teoría de la gravedad cuántica: la llave del pasado y del futuro del Universo.

Leer más ...
................


Gravitación cuántica, distancia fundamental y teoría de cuerdas:
Una propiedad matemática tan elemental como es la no conmutatividad está en la base de lo que será la futura teoría de gravitación cuántica. Los retículos espaciales que sustituyen a las coordenadas no conmutan, es decir si X es el operador cuántico de la coordenada x e Y es el operador de la y, el producto XY es diferente al producto YX. Las coordenadas clásicas son simples números reales que por descontado son conmutables, pues da lo mismo multiplicar las coordenadas xy en ese orden o en el contrario yx. Esta diferencia tan abismal nos da una idea de la nueva complejidad necesaria para poder describir correctamente la realidad del espaciotiempo.

Leer más ...


Un abrazo amigos.

2011/02/18

Agujeros negros/blancos y paradigma holográfico

Curiosidades sobre hologramas

Además de ser tridimensional, la imagen registrada en un holograma difiere
de una fotografía convencional en un sentido muy importante.Si se corta
una fotografía normal por la mitad, cada parte contendrá sólo la mitad de
la imagen contenida en la fotografía original. En cambio, si se corta un
holograma por la mitad y se proyecta un haz de láser a través de una de
las secciones, se comprobará que cada mitad contiene la imagen
completa del holograma original, con menor definición. Cada
diminuta parte del holograma contiene no sólo su propio "bit" de
información, sino también todo otro "bit" de información correspondiente
al resto de la imagen; en consecuencia, se puede cortar un holograma
en pedazos y cada porción individual contendrá una versión borrosa pero
completa de la imagen entera. Dicho de otro modo, en un holograma
cada parte de la imagen interpenetra todas las demás partes,
de la misma forma que en el universo no local todas sus partes se interpenetran.

Seguir leyendo.. (El universo como holograma multidimensional)



Agujero negro/agujero blanco

En una ocasión, meditando sobre
este fenómeno tan asombroso
pensé en lo que significan los
agujeros negros con relación al
resto del universo. En cierta
forma, pensé, si admitimos que el
universo es un inmenso holograma
(David Bohm), cada agujero negro supone una especie de "corte", o separación, en dicho holograma. En un sentido clásico esa separación no tendría trascendencia pero en el sentido holográfico ese pedazo de universo separado intentaría reproducir, de forma más borrosa, al universo entero:
Podría significar que se abre a un nuevo espacio-tiempo, en forma de agujero blanco, creando un nuevo universo con una constante
de Planck mayor que en el nuestro, porque supondría una menor
definición, un "grano fotográfico" mayor y un universo "más borroso",
con menor grado de información.



Constante de mínima acción y máxima información en una región del espacio

Continuando con este razonamiento y partiendo de la igualdad que liga tres
constantes universales para definir la menor longitud posible Lp (longitud
de Planck), (Lp)2 = h G/c3, observamos que el cociente Lp2/h que liga el
cuanto de acción con la superficie de Planck lo podemos igualar a un cociente
de constantes G/c3(constante de la gravitación universal dividida por
velocidad de la luz al cubo). A priori, parece lógico que si en un universo
nuevo emergente, más "borroso" que el nuestro, el valor del cuanto de
acción es mayor también lo debería ser la mínima longitud definible en él.
Por lo que vemos, realmente, queda relacionado el valor de h no con Lp
sino con Lp2 , con una superficie. Seguir leyendo...

Es significativo, porque la máxima información contenida en
cualquier región del espacio depende de la superficie que la
envuelve, expresada en unidades mínimas de superficie de
Planck (Lp2 ). En cierta forma parece que, en el hipotético caso de que
en otros universos la constante de mínima acción de Planck sea diferente,
ésta estaría relacionada con la cantidad de información que puedan encerrar
dichos universos.

2010/12/07

Notas varias, collage claroscuro tirando al negro

Algunas notas, casi al azar, sobre gravitación cuántica y agujeros negros

Sobre espacio-tiempo y paradigma holográfico:
Conforme avanza nuestro conocimiento sobre el universo aparecen más interrogantes, vuelven las eternas preguntas que se han hecho los filósofos de todos los tiempos, aunque la perspectiva ha cambiado sustancialmente. Los principios básicos que vislumbramos sobre la gravedad cuántica nos indican que el propio espacio-tiempo no es el fundamental, eterno e inmóvil referente que siempre hemos creído sino que emerge de una entidad fundamental discreta (no continua) y su propia geometría debe estar inextricablemente ligada a las relaciones causales entre sucesos.

Leer más...

.............................
Extraña luz de agujero negro:
Un agujero negro del que no salga nada (el caso clásico), ni presente al exterior ninguna manifestación cuando engulle materia con mucha entropía, sugiere una forma demasiado fácil de disminuir la entropía de la materia exterior al mismo. Conforme arrojáramos al agujero materia con gran entropía haríamos disminuir la entropía exterior. Serían agujeros por los que se “escaparía” el cumplimiento de la segunda ley de la termodinámica, la tendencia natural al aumento de entropía o desorden (ver nota final sobre la entropía). Desde el Bing Bang, una explosión en perfecto orden , la entropía total del Universo no ha dejado de crecer y así será hasta la llamada muerte térmica .


La extraña luz de los agujeros negros, bautizada como radiación de Hawking que fue quien la descubrió, devuelve desorden, entropía, a nuestro Universo que sigue degradándose sin remedio hasta su muerte final (la energía de la radiación calorífica es la energía más degradada). Sin esa tenue luz los agujeros negros engullirían, además de materia, desorden. El determinismo clásico los hace más negros pero menos reales… la realidad, por una vez, no es tan “negra” como la pintan.

Leer más...

..................

Dragones alados y agujeros negros:
Agujeros negros, agujeros de gusano, túneles en el espacio-tiempo, viajes en el tiempo, distorsión espacial y temporal, todos estos conceptos que parecen sacados de una novela de ciencia ficción, forman parte ya de la ciencia seria que se investiga en la actualidad, y no deja de ser una paradoja que la física, la ciencia más pura y dura, se ocupe de cuestiones, en otro tiempo, esotéricas. La materia a la que nos agarramos como lo más sólido, simple y real que tenemos se está convirtiendo, cada vez más, en algo lleno de misterio y complejidad. La física cuántica y la teoría de la relatividad general nos la presentan como algo siempre en movimiento que se confunde con el propio espacio y tiempo. Conforme tratamos de entender sus propias entrañas se nos aparece como formando una especie de entidad compleja que algún premio Nóbel no ha dudado en llamar: la materia-espacio-tiempo. Las extrañas criaturas que son los agujeros negros, con la curiosidad que han despertado entre los físicos, a comprender mejor el mundo que nos rodea. En cierta forma su negra belleza ha arrojado un rayo de luz sobre nuestro conocimiento del universo que nos cobija.



Leer más ...

......................

Antes del Big Bang, la espuma cuántica:

La mecánica cuántica nos prepara en cierta forma la mente para imaginar la creación del Universo a partir de una nada cuajada de fluctuaciones cuánticas pre-espaciotemporales. Ya en el Universo actual nos enseña que el vacío es un verdadero hervidero de creación y aniquilación de partículas virtuales que, a distancias del orden de Planck, se convierte en la llamada "espuma" cuántica del espacio-tiempo. En ella nada de lo que conocemos y nos es familiar cuenta pues entramos en los dominios de la desconocida, hasta ahora, gravedad cuántica.
Leer más ...

...................

Radiación de Hawking:
Conforme más sabemos de estas exóticas criaturas estelares, más nos sorprenden. Hemos descubierto que emiten radiación (llamada de Hawking) y no son tan negros como nos los pintaban; que el área de su horizonte de sucesos nos mide toda su entropía y nos delata la magnitud del desorden exterior que ha devorado, y que mueren en medio de un estallido de energía brutal. Parecía que nos lo querían esconder todo, y, sin embargo, nos cuentan cosas que sin ellos nunca habríamos sabido sobre el propio nacimiento del Universo y de su final, pues sus propiedades llevan años alumbrando la dirección que debemos tomar para descubrir la futura teoría de la gravedad cuántica: la llave del pasado y del futuro del Universo.

Leer más ...

................


Gravitación cuántica, distancia fundamental y teoría de cuerdas:
Una propiedad matemática tan elemental como es la no conmutatividad está en la base de lo que será la futura teoría de gravitación cuántica. Los retículos espaciales que sustituyen a las coordenadas no conmutan, es decir si X es el operador cuántico de la coordenada x e Y es el operador de la y, el producto XY es diferente al producto YX. Las coordenadas clásicas son simples números reales que por descontado son conmutables, pues da lo mismo multiplicar las coordenadas xy en ese orden o en el contrario yx. Esta diferencia tan abismal nos da una idea de la nueva complejidad necesaria para poder describir correctamente la realidad del espaciotiempo.

Leer más ...


Un abrazo amigos.

2008/07/20

Dragones alados y agujeros negros

Después de un post tan denso y pesado como el anterior vuelvo a presentaros a uno de mis clásicos a modo de lectura veraniega.

Los agujeros negros, esas extrañas y poderosas criaturas intuidas por la relatividad general de Einstein, son a esta época y sociedad técnica como los terribles y alados dragones de fuego eran al medioevo. Posiblemente, gozan de las mismas características de seres extraordinarios mitad verdad, mitad mentira, de las que gozaban aquellos dragones míticos. Y sin embargo son reales.

Técnicamente responden a lo que se llama una singularidad del espacio-tiempo, es decir, son lugares en donde la materia, el espacio y el tiempo colapsan. En un agujero negro dejan de tener sentido las leyes físicas tal y como las conocemos. Es un objeto estelar en donde la materia está tan comprimida, es tan densa, como toda la masa de la Tierra apretujada en la cabeza de un alfiler. Por efecto de la atracción gravitatoria que se genera ni los propios rayos de luz son capaces de escapar. En consecuencia vemos una especie de agujero sin luz, al que llamamos “agujero negro”.

El agujero negro es el resultado del último estadio de la vida de ciertas estrellas. A partir de una cierta masa, cuando el combustible nuclear de la estrella se acaba, las reacciones termonucleares no pueden impedir que la fuerza de la gravedad atraiga toda la materia de la estrella hacia el centro de la misma.

En las proximidades del llamado horizonte de sucesos del agujero, el lugar donde la materia, tal como la conocemos, conoce el último estadio antes de ser engullida, la distorsión del espacio y del tiempo es de tal calibre que una nave espacial que se encontrara allí la veríamos como suspendida, quieta, en reposo mientras que los tripulantes de la misma estarían experimentando una caída a gran velocidad hacia el abismo negro. Su tiempo y el nuestro quedan disociados debido al desmesurado efecto de la gravedad en las proximidades del agujero. El espacio queda también terriblemente distorsionado por un efecto brutal de marea: a pequeñas distancias la fuerza de atracción es extremadamente variable, de modo que una barra de hierro se estiraría como un chicle. Allí prolifera la llamada materia exótica capaz de desencadenar una especie de minúsculos túneles en el espacio tiempo que son no menos interesantes que los agujeros negros. Esos túneles son llamados “agujeros de gusano” y son capaces, al menos en teoría, de comunicar dos lugares distantes en el espacio y en el tiempo. Su estabilidad y tamaño vienen determinados por la cantidad de materia exótica que les aportemos y son la respuesta hipotética a los viajes interestelares a galaxias que se encuentren a millones de años-luz de nosotros.

Agujeros negros, agujeros de gusano, túneles en el espacio-tiempo, viajes en el tiempo, distorsión espacial y temporal, todos estos conceptos que parecen sacados de una novela de ciencia ficción, forman parte ya de la ciencia seria que se investiga en la actualidad, y no deja de ser una paradoja que la física, la ciencia más pura y dura, se ocupe de cuestiones, en otro tiempo, esotéricas. La materia a la que nos agarramos como lo más sólido, simple y real que tenemos se está convirtiendo, cada vez más, en algo lleno de misterio y complejidad. La física cuántica y la teoría de la relatividad general nos la presentan como algo siempre en movimiento que se confunde con el propio espacio y tiempo. Conforme tratamos de entender sus propias entrañas se nos aparece como formando una especie de entidad compleja que algún premio Nóbel no ha dudado en llamar: la materia-espacio-tiempo. Las extrañas criaturas que dan nombre a este artículo han contribuido, con la curiosidad que han despertado entre los físicos, a comprender mejor el mundo que nos rodea. En cierta forma su negra belleza ha arrojado un rayo de luz sobre nuestro conocimiento del universo que nos cobija.

Para saber más:
KIP S. THORNE (1995),”Agujeros negros y tiempo curvo”, ed. Crítica. Barcelona.
ROGER PENROSE(1991),”La nueva mente del emperador”, ed.Grijalbo Mondadori. Barcelona.
GILLES COHEN-TANNOUDJI Y MICHEL SPIRO(1988),”La materia-espacio-tiempo”, Espasa-Universidad.Madrid.
STEPHEN W. HAWKING Y ROGER PENROSE(1994),”Cuestiones cuánticas y cosmológicas”, Alianza Universidad.Madrid.
MICHIO KAKU(1996),”Hiperespacio”,ed.Crítica.Barcelona.

2008/03/02

La radiación de agujero negro o de Hawking

Por su propia definición los agujeros negros son objetos que se supone que no emiten nada, y durante mucho tiempo científicos de la talla de Stephen Hawking se resistieron a pensar que de ellos pudiera salir cualquier tipo de radiación. Sin embargo el hecho de que el propio Hawking descubriera que el área del horizonte de sucesos de un agujero negro aumentaba cada vez que caía materia, sugirió a un estudiante de investigación en Princeton, llamado Jacob Bekenstein, que dicha área era una medida de la entropía del agujero negro.

Esto impediría que los agujeros negros violaran la segunda ley de la termodinámica, el aumento de entropía o desorden, pero si se admitía que un agujero negro tiene entropía también debería tener una temperatura y y por tanto emitir cierta radiación. La cuestión de la entropía no era vana, pues un agujero negro del que no salga nada, ni presente al exterior ninguna manifestación cuando engulle materia con mucha entropía sugiere una forma demasiado fácil de disminuir la entropía de la materia exterior al mismo. Conforme arrojáramos al agujero materia con gran entropía haríamos disminuir la entropía exterior.

Los primeros cálculos que parecían demostrar que los agujeros negros eran capaces de emitir ciertas radiaciones los efectuaron dos físicos soviéticos, Yakov Zeldovich y Alexander Starobinski al principio de los años setenta. Pero su cálculo se refería a agujeros negros en rotación. Ellos convencieron a Hawking de que, según el principio de incertidumbre mecanocuántico, los agujeros negros en rotación deberían crear y emitir partículas. Hawking mediante un tratamiento matemático mejorado descubrió que no sólo debían emitir partículas los agujeros en rotación sino todos. Lo que le convenció de que la emisión era real fue que el espectro de las partículas emitidas era exactamente el que sería emitido por un cuerpo caliente (aquí, caliente es considerada la temperatura superior al cero absoluto ó 273,15 grados centígrados bajo cero).

Todos los cálculos posteriores que se han hecho confirman que un agujero negro debe emitir partículas y radiación como si fuera un cuerpo caliente con una temperatura que depende solo de la masa del agujero negro: Cuanto mayor es la masa, menor es la temperatura. El origen de esa emisión son las fluctuaciones cuánticas del vacío, pares de partículas que aparecen juntas en cierto instante, se separan y luego se juntan de nuevo y se aniquilan mútuamente. Estas partículas se denominan virtuales y por la conservación de la energía, una de las componentes de un par tendrá energía positiva y la otra negativa. Si la partícula con energía negativa cae en el agujero su compañera con energía positiva tiene la posibilidad de escapar del agujero como una partícula real. Para un observador exterior parecerá haber sido emitida desde el agujero negro.

Cuanto menor es la masa de un agujero negro, más alta es su temperatura, por tanto, a medida que el agujero negro pierde masa, su temperatura y el ritmo de emisión aumentan y con ello pierde masa con mayor rapidez. Se supone que cuando su masa se reduce lo suficiente el agujero negro desaparecerá en un tremendo estallido final de emisión que podría ser equivalente a la explosión de millones de bombas H.

Conforme más sabemos de estas exóticas criaturas estelares, más nos sorprenden. Hemos descubierto que emiten radiación (llamada de Hawking) y no son tan negros como nos los pintaban; que el área de su horizonte de sucesos nos mide toda su entropía y nos delata la magnitud del desorden exterior que ha devorado, y que mueren en medio de un estallido de energía brutal. Parecía que nos lo querían esconder todo, y, sin embargo, nos cuentan cosas que sin ellos nunca habríamos sabido sobre el propio nacimiento del Universo y de su final, pues sus propiedades llevan años alumbrando la dirección que debemos tomar para descubrir la futura teoría de la gravedad cuántica: la llave del pasado y del futuro del Universo.

2006/12/16

Dragones alados y agujeros negros (*)


Los agujeros negros, esas extrañas y poderosas criaturas intuidas por la relatividad general de Einstein, son a esta época y sociedad técnica como los terribles y alados dragones de fuego eran al medioevo. Posiblemente, gozan de las mismas características de seres extraordinarios mitad verdad, mitad mentira, de las que gozaban aquellos dragones míticos. Y sin embargo son reales.

Técnicamente responden a lo que se llama una singularidad del espacio-tiempo, es decir, son lugares en donde la materia, el espacio y el tiempo colapsan. En un agujero negro dejan de tener sentido las leyes físicas tal y como las conocemos. Es un objeto estelar en donde la materia está tan comprimida, es tan densa, como toda la masa de la Tierra apretujada en la cabeza de un alfiler. Por efecto de la atracción gravitatoria que se genera ni los propios rayos de luz son capaces de escapar. En consecuencia vemos una especie de agujero sin luz, al que llamamos “agujero negro”.

El agujero negro es el resultado del último estadio de la vida de ciertas estrellas. A partir de una cierta masa, cuando el combustible nuclear de la estrella se acaba, las reacciones termonucleares no pueden impedir que la fuerza de la gravedad atraiga toda la materia de la estrella hacia el centro de la misma.

En las proximidades del llamado horizonte de sucesos del agujero, el lugar donde la materia, tal como la conocemos, conoce el último estadio antes de ser engullida, la distorsión del espacio y del tiempo es de tal calibre que una nave espacial que se encontrara allí la veríamos como suspendida, quieta, en reposo mientras que los tripulantes de la misma estarían experimentando una caída a gran velocidad hacia el abismo negro. Su tiempo y el nuestro quedan disociados debido al desmesurado efecto de la gravedad en las proximidades del agujero. El espacio queda también terriblemente distorsionado por un efecto brutal de marea: a pequeñas distancias la fuerza de atracción es extremadamente variable, de modo que una barra de hierro se estiraría como un chicle. Allí prolifera la llamada materia exótica capaz de desencadenar una especie de minúsculos túneles en el espacio tiempo que son no menos interesantes que los agujeros negros. Esos túneles son llamados “agujeros de gusano” y son capaces, al menos en teoría, de comunicar dos lugares distantes en el espacio y en el tiempo. Su estabilidad y tamaño vienen determinados por la cantidad de materia exótica que les aportemos y son la respuesta hipotética a los viajes interestelares a galaxias que se encuentren a millones de años-luz de nosotros.

Agujeros negros, agujeros de gusano, túneles en el espacio-tiempo, viajes en el tiempo, distorsión espacial y temporal, todos estos conceptos que parecen sacados de una novela de ciencia ficción, forman parte ya de la ciencia seria que se investiga en la actualidad, y no deja de ser una paradoja que la física, la ciencia más pura y dura, se ocupe de cuestiones, en otro tiempo, esotéricas. La materia a la que nos agarramos como lo más sólido, simple y real que tenemos se está convirtiendo, cada vez más, en algo lleno de misterio y complejidad. La física cuántica y la teoría de la relatividad general nos la presentan como algo siempre en movimiento que se confunde con el propio espacio y tiempo. Conforme tratamos de entender sus propias entrañas se nos aparece como formando una especie de entidad compleja que algún premio Nóbel no ha dudado en llamar: la materia-espacio-tiempo. Las extrañas criaturas que dan nombre a este artículo han contribuido, con la curiosidad que han despertado entre loas físicos, a comprender mejor el mundo que nos rodea. En cierta forma su negra belleza ha arrojado un rayo de luz sobre nuestro conocimiento del universo que nos cobija.

Para saber más:
KIP S. THORNE (1995),”Agujeros negros y tiempo curvo”, ed. Crítica. Barcelona.
ROGER PENROSE(1991),”La nueva mente del emperador”, ed.Grijalbo Mondadori. Barcelona.
GILLES COHEN-TANNOUDJI Y MICHEL SPIRO(1988),”La materia-espacio-tiempo”, Espasa-Universidad.Madrid.
STEPHEN W. HAWKING Y ROGER PENROSE(1994),”Cuestiones cuánticas y cosmológicas”, Alianza Universidad.Madrid.
MICHIO KAKU(1996),”Hiperespacio”,ed.Crítica.Barcelona.

(*)Reedición del post del mismo nombre de 8/01/06.

2006/11/14

¿Universo holográfico?



Los resultados teóricos relativos a la entropía de los agujeros negros llevan a concluir que el universo podría ser un inmenso holograma. Jacob D. Bekenstein.

Del estudio de las propiedades de los agujeros negros se han deducido los límites absolutos que acotan la información que cabe en una región del espacio. Teniendo en cuenta que esos límites dependen de la materia y energía contenida en ese espacio es asombroso que se pueda deducir un límite sin conocer ni siquiera , con absoluta certeza, el último componente de la materia ( se cree que los quarks y los electrones son excitaciones de supercuerdas que deben ser los entes fundamentales, pero no se descartan niveles más bajos).

La clave está en la entropía, en 1877 , Ludwing Boltzmann la caracterizó como el número de estados microscópicos distintos ( N) en los que pueden hallarse las partículas que componen un trozo de materia de forma que siga pareciendo el mismo trozo desde un punto de vista macroscópico.

Las dos entropías: Cuando el matemático Claude E. Shannon buscó una manera de cuantificar la información contenida en un mensaje, la lógica le llevó a una fórmula que tenía el mismo aspecto que la de Boltzmann. Después se vio que la entropía termodinámica y la de Shannon son conceptualmente equivalentes: el número de configuraciones que se cuentan en la entropía de Boltzmann refleja la cantidad de información de Sannon que se necesitaría para realizar cualquier configuración determinada.

Se pensaba que cuando caía la materia en un agujero negro desaparecía también con ella su entropía, pero Demetrious Christodoulou ( 1970) y Stephen W. Hawking demostraron que en el proceso de fusión de dos agujeros negros, nunca decrecía el área total de los horizontes de sucesos. A partir de estos estudios y del posterior descubrimiento de que los agujeros negros emiten radiación , precisamente llamada radiación de Hawking ( 1974) ser su descubridor, se determinó la constante de proporcionalidad entre la entropía de un agujero negro y el área del horizonte: La entropía del agujero negro es exactamente una cuarta parte del área del horizonte de sucesos medida en áreas de Plank ( 10 –66 centímetros cuadrados). Es como si la entropía, en cuanto medida de información, estuviese escrita sobre el horizonte de sucesos, de suerte que cada bit ( cada 0 ó 1 de la codificación digital) correspondiera a 4 áreas de Planck.

Este sorprendente resultado tiene una explicación natural si es cierto el principio holográfico propuesto en 1993 por el Premio Nobel Gerard `t Hooft, de la Universidad de Utrech, y elaborado por Leonard Susskind. Sobre esta teoría, Juan Maldacena, de la Universidad de Harvard, en un reciente artículo de enero del 2006, en Investigación y Ciencia, afirma que: “ La fuerza de la gravedad y una de las dimensiones espaciales quizá procedan de las peculiares interacciones, entre partículas y campos, existentes en un espacio con menos dimensiones”.



La descripción tridimensional con ley de gravedad sería equivalente a la descripción holográfica sin gravedad y en dos dimensiones, de modo que un determinado cálculo demasiado difícil en una descripción puede resultar trivial en la otra. A pesar de su radical diferencia, las dos teorías describirían por igual todo lo que vemos y cualquier dato que pudiésemos recoger sobre el funcionamiento del universo.


Un holograma es un objeto bidimensional que codifica toda la información que describe la imagen tridimensional. Nuestro Universo tridimensional podría estar codificado en una superficie que lo contiene, como una especie de inmenso holograma. Los experimentos de física de partículas de altas energías, según Juan Maldacena, quizás hayan encontrado ya indicios de la validez de este principio.


Nota final: En el post sobre los condensados de Bose–Einstein, me llamó la atención un artículo del Dr. Fernando Sols de la Universidad Complutense. En él hablaba de separar un condensado de varios millones de átomos en dos partes tratando de que siguieran estando en coherencia cuántica. Le comenté, por correo, que con este tipo de “superátomos” que son los condensados de B-E se podría hacer un experimento sobre el principio holográfico. Me contestó muy amablemente, aclarándome las dificultades que entrañaría mantener la coherencia de las dos partes del condensado. Si se consigue la coherencia entre las dos partes del condensado, nos encontraríamos con la paradoja de que en cada parte del condensado no tendremos la mitad de los átomos, sino que todos los átomos estarían a la vez en las dos partes. Aunque difícil, esta podría ser una vía interesante de constatación del principio holográfico.

Investigación y cienca. Octubre-2003 y enero-2006.

2006/06/10

¿Se pierde la información en un agujero negro?


Cuando algo cae en un agujero negro desaparece para siempre a nuestros ojos y, hasta hace poco, se pensaba que era imposible recuperar la información codificada en las propiedades de los átomos que lo constituían. Sin embargo, se ha demostrado que la estructura matemática de la mecánica cuántica garantiza la conservación de la energía y la reversibilidad. Esta se perdería si desapareciera la información y llevaría a la generación de inmensas cantidades de energía ( Thomas Banks, Michael Peskin y Leonard Susskind en la Universidad de Stanford en 1980) .

En la creación de un agujero negro se reúne tanta masa y energía en un punto tan pequeño que las fuerzas gravitatorias hacen que se derrumben bajo su propio peso. La materia se comprime hasta ocupar una región inmensamente pequeña, o singularidad, con densidad infinita. Esta singularidad se halla rodeada de una superficie llamada horizonte de sucesos, cuya magnitud depende de la masa del agujero negro( esta superficie cubre la singularidad evitando lo que Penrose-Hawking llamaban singularidad desnuda). Jacob D. Bekenstein halló que la entropía ( medida del desorden que se mide como el logaritmo del número de estados posibles del sistema y cuantifica su capacidad de portar información) de un agujero negro era proporcional al área de su horizonte, no a su volumen ( Stephen W. Hawking desarrolló la fórmula precisa).

Finalmente, los estudios matemáticos efectuados en Stanford por A Peet, Thorlacius, A Mezhlumian y L. Susskind mediante la teoría de cuerdas vienen a elucidar que el horizonte estaría formado por una maraña gigantesca de cuerdas que codifican toda la información de la materia caída. Esta información es luego radiada, muy lentamente, al exterior por la llamada radiación cuántica de Hawking .

Ver INVESTIGACIÓN Y CIENCIA, Temas 43, 1º trimestre 2006,”Fronteras de la física”.

Ver post más reciente (14-11-2006): ¿Universo holográfico?, más completo.