Mostrando entradas con la etiqueta materia oscura. Mostrar todas las entradas
Mostrando entradas con la etiqueta materia oscura. Mostrar todas las entradas

2009/07/01

La cara oscura del Universo

El estudio de los cúmulos de galaxias nos ofrece una visión sorprendente del comportamiento de la materia oscura. Se compone de algún tipo de partícula que no interactúa con ninguna otra, es decir, es completamente idetectable más allá de su efecto gravitatorio.Una especie de sombra de la materia ordinaria, ¿ o quizás es al contrario?

Cuando Fritz Zwicky, el 1933, observó las velocidades de las galaxias en el cúmulo de Coma (la Cabellera de Berenice) no podía entender como aquella rica concentración de galaxias se mantenía unida. La media de las velocidades de las galaxias respecto al centro de masas del cúmulo superaba los 1000 Km/s. La masa necesaria para mantener estable el cúmulo habría de ser, según sus cálculos, muy superior a la masa correspondiente a las galaxias que lo forman. Dicho de otra forma, el campo gravitatorio generado unicamente por las galaxias no era, en absoluto, suficiente para evitar que se disgregaran por el espacio. El hecho de que el cúmulo se mantuviera gravitacionalmente ligado implicaba la necesidad de postular la existencia de una gran cantidad de materia oculta. Esta matería que se mantenía invisible al telescopio de 48 pulgadas de Monte Palomar con el cual Zwicky observaba el cúmulo podría existir en forma de estrellas frías o polvo y detectarla nada más sería posible con el posterior desarrollo de telescopios infrarrojos. Quizás la materia escondida podría estar en forma de gas muy caliente que emitiría en rayos X y que podría ser detectada mediante telescopios especiales que observaran el cúmulo en aquellas longitudes de onda desde fuera de la atmósfera.


Ambas observaciones se hicieron mucho después de los trabajos pioneros de Zwicky. En la década de 1980 se pudo comprobar que la mayor parte de materia ordinaria de un cúmulo está en forma de gas caliente con temperaturas de decenas de millones de grados. A estas temperaturas los átomos que componen el gas han perdido los electrones, decimos que están ionizados. Los electrones circulan a gran velocidad en un medio que llamamos plasma, cuando chocan con los iones sufren una frenada que se salda con la emisión de un fotón muy energético y se produce radiación en la banda X del espectro electromagnético.

Al observar un cúmulo de galaxias con un telescopio de rayos X desde el espacio, la imagen es muy diferente de la que se obtiene con un telescopio óptico. Se detectan extensas y difusas áreas de emisión de rayos X producidos por nubes de gas caliente atrapadas en el interior del cúmulo. El estudio de la temperatura e intensidad de esta radiación permite determinar la masa del cúmulo: una masa total unas cuatro veces superior a la masa luminosa del cúmulo. Poniendo números, podemos decir que el gas caliente que emite rayos X representa el 20% de la masa del cúmulo y las galaxias que observamos en el óptico e infrarrojos constituyen un 5% más. El 75% restante ha de ser materia oscura de naturaleza desconocida.

Hay una tercera vía para medir la cantidad de materia en un cúmulo de galaxias. Desde que Einstein lo propuso y Eddington lo comprobó experimentalmente, sabemos que la presencia de materia no sólo curva la trayectoria de los cuerpos en movimiento (por acción de la gravedad) sino que también hace curvar la trayectoria de los rayos de luz. Así se producen una serie de efectos peculiares: hay objetos que aparentemente cambian de posición a causa de la curvatura de la luz emitida por ellos, cambian de luminosidad aparente, y hasta padecen deformaciones en su forma. Estos cambios y deformaciones son más notorios cuando mayor es la cantidad de materia que la luz ha de atravesar. En un caso extremo, como es el de un cúmulo de galaxias, las deformaciones son muy fuertes, y perceptibles en imágenes realizadas con grandes telescopios, y en particular, con el telescopio espacial Hubble.


Si el cúmulo fuera una distribución extremadamente suave de materia, sin grumos, actuaría como una lente perfecta y produciría aumentos o distorsiones simples, pero como en realidad es extremadamente no homogeneo, el efecto se parece al que se produce cuando observamos a través de la base de un vaso de vidrio: aparecen arcos y deformaciones. Cuantificando este efecto, por ejemplo a través del número de arcos, las posiciones de estos, o el número de imágenes múltiples del mismo objeto, podemos medir la cantidad de materia que contiene el cúmulo.

Recientemente ha sido posible combinar todos estos tipos de medidas en un cúmulo muy interesante: el cúmulo de la Bala. Este cúmulo se compone en realidad de dos estructuras de galaxias, que aparentemente han chocado. Los dos grupos de galaxias se han atravesado, porque hace falta tener en cuenta que los cúmulos, aunque son muy densos en términos de número de galaxias, son en gran medida espacio vacío: dos cúmulos pueden perfectamente atravesarse sin que cada de las galaxias individuales choque. Así vemos que las dos agrupaciones de galaxias parecen ignorarse mútuamente, de hecho sólo podemos suponer que se han atravesado porque las respectivas velocidades indican que se alejan el uno del otro.

La componente gaseosa de los cúmulos, en cambio, no se puede atravesar alegremente. Cada uno arrastra su propio gas, y el choque entre estas dos bolas de fluido reproduce precisamente lo que esperamos. Ambos se atraviesan pero notan fuertemente los efectos de la colisión: pierden velocidad y además en uno de ellos aparecen estructuras debidas a la onda de choque.

¿Donde va, pues, la mayor parte de la masa del cúmulo? ¿Se comporta como el gas, percibe el choque, y se queda detrás respecto a las galaxias que se atraviesan como fantasmas? El mapa de densidad de materia obtenido gracias a este efecto de lente gravitatoria nos indica que, al contrario, la materia oscura que no vemos ha seguido perfectamente la trayectoria de las galaxias. es decir, cada uno de los agregados de materia oscura (el 75% de la masa total del cúmulo) no ha sentido en absoluto la presencia del otro.

Esta es, de hecho, una de las propiedades básicas de la materia oscura, una de las pocas bien establecidas, y una de las más misteriosas. La materia oscura se compone de algún tipo de partícula que no interactúa con ninguna otra, es decir, es completamente idetectable más allá de su efecto gravitatorio. No hay hoy en día dentro del modelo estandard de la materia que compone el universo partículas que cumplan esa propiedad. Hay esperanzas que ampliaciones de este modelo puedan llevar al descubrimiento de este tipo de partículas (los axiones o las partículas supersimétricas son algunos de los candidatos), pero tendremos que esperar a nuevos desarrollos en física de partículas. Quizás el Gran Colisionador de Hadrones (LHC) en Ginebra nos acerpue un paso en la solución de este dilema.

Explicación sobre la imagen del cúmulo de Bala. Superpuesto a la imagen visible se incluye el mapa de emisión del gas caliente (rosa) y el mapa de densidad de materia obtenido usando el efecto de lente gravitatoria (azul). Se puede observar como el gas caliente ha sufrido los efectos de la colisión, mientras que la fantasmagórica materia oscura ha seguido su camino sin inmutarse.

Este post es la traducción del artículo "La cara fosca de l`Univers", del último número de la revista "Mètode" de la Universidad de Valencia. Mis agradecimientos a la revista y a los autores: Vicent Martínez, del Observatori Astronòmic de la Universitat de València, y a Alberto Fernandez-Soto del Instituto de Física de Cantabria. He disfrutado con este artículo sobre la sorprendente materia oscura, y me queda la sospecha, como les pasa a muchos, de que algo fundamental se nos escapa. La comprensión de estas oscuras compañeras de la materia puede traernos una nueva revolución en la física y en la comprensión de nuestro Universo. Un saludo amigos.

2008/09/12

Hawking y el LHC, 100 dólares contra 6.000 millones de euros

Stephen Hawking lanzó ayer una de sus famosas apuestas. Esta vez apuesta 100 dólares a que no se encontrará la famosa partícula del bosón de Higgs. Es una apuesta insignificante sobre los resultados de un dispositivo que cuesta la friolera de 6.000 millones de euros, pero todo el mundo sabe que las consecuencias del experimento, tanto si se encuentra como si no se encuentra el famoso bosón, cambiarán la física. Si existe y tiene las propiedades predichas por el Modelo Estándar de Física de Partículas, el LHC lo tiene que encontrar, si no se descubre nos tendríamos que replantear toda la física de partículas.

Además de encontrar el bosón de Higgs hay una serie de posibles descubrimientos que pueden estar esperando en el túnel del LHC. Uno de ellos es toda una familia de partículas llamadas supersimétricas que duplica las ya conocidas. Una de esas partículas supersimétricas, el neutralino, tiene un atractivo teórico especial porque es el mejor candidato para constituir la misteriosa materia oscura. Otro de los posibles hallazgos podría ser el descubrimiento de nuevas dimensiones del espacio, sería posible que cada "punto" del espacio tenga sus propias dimensiones compactadas como predicen las teorías de cuerdas. Gracias a las energías implicadas en el LHC podremos "ver" la estructura espacial desde "mucho más cerca" y este hecho podría depararnos más de una sorpresa.

Sobre la posible formación de microagujeros negros, algo que en los últimos meses ha levantado toda una polémica en la red, en una entrevista que hoy publica el periódico El País,  el físico teórico español en el CERN Álvaro de Rújula indica:" Si hay dimensiones extras, puede que se logren formar en el LHC microagujeros negros, y no son nada peligrosos: con la misma convicción que los físicos sabemos que tirar una manzana no es tan peligroso como tirar una granada de mano, sabemos que los microagujeros negros son inofensivos".


Se habla mucho de lo que ha costado construir el LHC, pero los gobiernos de decenas de países no se han gastado miles de millones de euros para saber qué pasaba en el Universo una milmillonésima de segundo después del Big Bang(***). El interés del LHC es que el reproducir las condiciones extremas del Universo primordial nos puede ayudar a responder algunas de las preguntas sobre cuáles son las leyes fundamentales de la naturaleza para las que aún no tenemos respuesta. Cualquiera de esas respuestas pueden ser tan, aparentemente, anodinas como lo debió ser para la mayoría de los no entendidos en físicas el descubrimiento del cuanto de acción, llamado de Planck, hace más de 100 años. Sin embargo fue la base de la mecánica cuántica, gracias a la cual ahora estoy escribiendo este post en el ordenador y existe internet, los móviles, la televisión, nuestros automóviles modernos y todos los dispositivos electrónicos que, en general, nos permiten una vida mejor y que inundan nuestras casas, lugares de trabajo, hospitales o escuelas.

Gane o no gane la apuesta Stephen Hawking, el LHC cambiará nuestras vidas y la de nuestros hijos.

(***) (Apuntes científicos desde el MIT) La teoría actual del origen del Universo nos dice que todo empezó con lo que se suele llamar la Gran Explosión (el Big Bang en inglés). Este apelativo metafórico nos incita a pensar en un instante inicial muy “ruidoso”, una especie de fuegos artificiales, pero el Big Bang empezó en silencio, y sería más adecuado imaginarlo como una “explosión” en la que se crean el espacio y el tiempo. Si tratamos de entender ese instante con la teoría de la Relatividad General nos encontramos con una singularidad, un universo primigenio en el que la temperatura y densidad eran infinitas. Estas condiciones extremas son imposibles de imaginar, por lo que seguramente indican que nuestras teorías no son válidas para extrapolar hasta el mismo momento inicial.

A partir de ese momento el Universo se empezó a expandir rápidamente y a medida que crecía su tamaño se iba “enfriando”, o lo que es lo mismo, la energía de las partículas que contenía disminuía. Cuando sólo había transcurrido una milmillonésima de segundo después del Big Bang, el universo tenía una temperatura aproximadamente 100.000 veces superior a la del Sol y las partículas fundamentales que lo habitaban chocaban constantemente entre ellas con energías aproximadamente de 14 TeV. Estas condiciones son precisamente las que se quieren reproducir en el LHC. Al hacer colisionar partículas a 14 TeV, lo que queremos es entender qué sucedía en el Universo sólo una milmillonésima de segundo después del Big Bang.

2007/09/04

Corrientes de estrellas y materia oscura

Contrariamente a lo que se pensaba sobre que las galaxias experimentaron, en una época temprana, un crecimiento rápido que les dio su forma presente, hoy se cree que sólo las galaxias enanas (con masas de hasta mil millones de soles) pasaron por ese período abrupto de formación. Las galaxias grandes, como la Vía Láctea, con su billón de soles, se crearon después de la absorción progresiva de galaxias enanas, en un proceso que hoy en día todavía continúa. Las galaxias absorbidas forman las llamadas corrientes de estrellas, que con el tiempo (después de millones de años) se dispersan y acaban desvaneciendo su estructura espacial. Sin embargo, ciertos rasgos sutiles de su movimiento y su composición estelar son capaces de rebelar su origen.

Métodos de identificación de corrientes estelares
Dinámico: Solemos caracterizar el movimiento de los cuerpos por su posición y velocidad, pero el movimiento también tiene otras propiedades, como son la energía y el momento angular. Mientras que la posición se especifica en un espacio tridimensional, la posición más el momento se definen en un espacio de seis dimensiones, llamado el espacio de fases. La ventaja del espacio fásico es que la disposición de las estrellas, en él, se mantiene más tiempo que en el espacio real. Al medir la energía, el momento angular y la densidad en el espacio de fases de muestras aleatorias de estrellas se descubren agrupamientos que no se perciben directamente.

Químico: Otro método que se empieza ahora a probar es el de la huella química. Dado que las estrellas no nacen aisladas, sino suelen ser creadas en una misma nuve de gas, cada nube tiene una mezcla única de elementos químicos e isótopos que deja su huella en la composición de las estrellas. Siguiendo esa huella se es capaz de identificar las estrellas con los mismos "genes" estelares y se puede identificar su origen local o foráneo.

Cuando hace algo más de diez años se descubrió la corriente estelar de la galaxia enana Sagitario, muchos lo consideraron una simple curiosidad, pero pronto se convirtió en el emblema de una historia compleja de fusiones y acreciones de la Vía Láctea, procesos que hoy sabemos que son los motores de la formación y la evolución de las galaxias. Además, el estudio de estas corrientes galácticas nos están ayudando a conocer, un poco más, algo tan misterioso como la llamada materia oscura.

Sobre corrientes y materia oscura
Las estrellas representan una fracción pequeña de las galaxias, que en su mayor parte se componen de materia oscura, de naturaleza desconocida. Una forma de saber la distribución, y la posible composición, de esta materia es seguir y analizar el movimiento de una estrella (que está sujeta a su influencia gravitatoria) a medida que describe una órbita alrededor del centro de la galaxia, pero deberíamos realizar una observación que duraría millones de años. Sin embargo el estudio de las corrientes estelares nos revelan los mismos datos, pues nos describen las trayectorias, durante millones de años, de centenares de miles de estrellas pertenecientes a galaxias enanas absorbidas por galaxias mayores. El equipo de los astrofísicos Rodrigo Ibata y Brad Gibson en base a los datos obtenidos con la corriente estelar Sagitario ha descubierto que la materia oscura no se reparte alrededor de la Vía Láctea en forma de un elipsoide, como predecían las simulaciones numéricas, sino en forma de una esfera.

Se puede llegar a descubrir si la materia oscura se reparte de forma homogénea o se crea grumos. Según sea su composición cabría esperar lo uno o lo otro. Si la materia oscura está formada por partículas que sólo interactúan de forma gravitatoria, no hay nada que impida su agrupamiento, pero si se compone de partículas que interactúan de otra forma, podrían resistirse a la atracción gravitatoria y extenderse de forma homogénea.


Satélite de exploración Gaia
Desde finales de 2011 hasta 2020, el satélite Gaia, el telescopio espacial más ambicioso que se haya concebido, explorará en detalle las posiciones y velocidades de las estrellas en las corrientes delgadas, y deberá confirmar o descartar la existencia de grumos de materia oscura. “ De esta manera, corrientes estelares más extensas que una galaxia entera pondrían de manifiesto las propiedades de partículas más pequeñas que los átomos.




Fuentes:
-"La huella de galaxias destruidas", Rodrigo Ibata y Brad Gibson. INVESTIGACIÓN Y CIENCIA. Junio de 2007
- Astroseti