Mostrando entradas con la etiqueta dependencia espacial de los fractales. Mostrar todas las entradas
Mostrando entradas con la etiqueta dependencia espacial de los fractales. Mostrar todas las entradas

2018/07/11

Algo más sobre los fractales, su dependencia espacial


La dimensión de un fractal está íntimamente relacionada con la manera en que éste se extiende por el espacio. Su dimensión nos da la capacidad del fractal de recubrir un espacio de dimensión topológica superior a la suya, de hecho, una trayectoria fractal de dimensión 2 es capaz de recubrir el plano, y de dimensión 3 el espacio tridimensional. 


Imaginemos que en un espacio de tres dimensiones nos encontramos con una especie de diablillo virtual moviéndose aleatoriamente, con total libertad, y tratando de recubrirlo por completo. Su trayectoria será una línea quebrada, con infinidad de recovecos, cuyo fin será pasar por todos los puntos del espacio. Como línea de trayectoria que es su dimensión topológica será la unidad, pero su capacidad de recubrir el espacio nos indica que estamos ante un objeto geométrico diferente a los típicos objetos euclidianos que hemos estudiado en la escuela, como el punto, la línea o el plano de dimensiones cero, uno o dos. Este tipo de objetos es lo que Benoît Mandelbrot llamaba en 1975 objetos fractales, palabra que inventó a partir del adjetivo latino “fractus” (roto, fracturado). 

Dimensión fractal. La dimensión que define la trayectoria del diablillo ya no es la dimensión clásica de una línea (la unidad), sino que a ella debemos añadir un coeficiente dimensional que nos indica su grado de irregularidad. La suma de los dos coeficientes nos da un nuevo valor dimensional al que llamamos dimensión fractal. En este caso hacemos la siguiente suma: dimensión geométrica clásica (1) + coeficiente dimensional (2) = dimensión fractal (3). 


Dependencia con la distancia. Hay un detalle más que nos da una idea del movimiento que lleva el diablillo. La distancia total que recorre al cabo de N de sus pasos debe ser sólo la raíz cúbica de su alejamiento efectivo a un punto arbitrario, es decir para alejarse una distancia efectiva d, de un punto cualquiera, su recorrido total deberá ser d3. Este exponente (3) nos está dando, también, la dimensión fractal del movimiento. En cierta forma es lógico que sea así, pues el volumen que intersecta y recubre la trayectoria es del orden del cubo de su distancia característica (Volumen = Lado3). 

En una trayectoria espacial fractal: 

(1) Distancia total recorrida = Distancia efectiva(dimensión fractal) 

Siendo la dimensión fractal igual a la dimensión topológica más un coeficiente dimensional positivo, tanto mayor cuanto más intrincado sea el fractal, la expresión (1) quedaría: 

(1) Distancia total recorrida = Distancia efectiva(dimensión topol. + coef. dimensional) 


¿Puede la geometría del espacio modificar la dimensión fractal?.Imaginemos una trayectoria fractal que pasa desde un espacio de 3 dimensiones a otro de 2. En la realidad podría ser el paso gradual de una tubería de 10 cm. x 10 cm. a otra de 0,1 cm. x 1000 cm., del mismo caudal. Para, depende que movimiento, el paso podría suponer cambiar, prácticamente, de 3 a 2 dimensiones. En la nueva situación la dimensión topológica habría descendido en una unidad, por lo que para el mismo coeficiente dimensional (que depende de la irregularidad del fractal), la nueva dimensión fractal sería menor. La disminución de dimensiones topológicas actúa de forma opuesta (restando) a como actúa el coeficiente dimensional (sumando). Al final obtendríamos, en la práctica, un movimiento menos irregular e intrincado. 


Y sobre todo esto, en plan un tanto informal, añado un articulito que se publicó en la web de la Real Sociedad Española de Física, en el foro de debate sobre Física Divertida . Pocos meses antes se había publicado en la revista ImasD de ciencia y tecnología (revista en papel, posteriormente electrónica y hoy desaparecida: www.ImasD-tecnología.com).Otro articulo posterior, también muy sencillo, publicado por la Revista Elementos, de la Universidad Autónoma de Puebla: El sorprendente vacío cuántico. 


El diablo Aleaxis y el efecto de ocultación de masa.
Aleaxis es un simpático e inconsciente diablillo que no para de dar pasos, a tontas y a locas de forma aleatoria, en cualquier dirección del plano. Su trayectoria es discontinua, puede ser representada por una línea quebrada que acabaría recubriendo todo el plano. En su torpeza, para recorrer una distancia efectiva de “n” pasos debe dar como media n x n , es decir n2pasos: su trayectoria, en realidad, representa un fractal, una estructura quebrada y discontinua de dimensión 2, la dimensión fractal que caracteriza al azar puro.

De forma similar, las fluctuaciones de energía del vacío (principio de incertidumbre) representan a otro diablo, esta vez real y poderoso, que hace mucho más interesante nuestro universo. Sin él el vacío estaría vacío, además de parecerlo, sería plano y estaría absolutamente quieto. Este diablo, un tanto escurridizo y nada torpe, arruga el espacio-tiempo y lo convierte en un fractal similar a la trayectoria de Aleaxis. Esta vez, para que nosotros observemos “n pasos” de fluctuación efectiva de energía, el diablo “da“ n x n x n pasos, es decir n3 .

Observando, solamente, los pasos efectivos de Aleaxis y sabiendo que su trayectoria es un fractal podemos inferir que existe un “efecto de ocultación de pasos”. De la misma forma, al observar las fluctuaciones efectivas de energía del vacío (son las únicas que podemos observar) deducimos que hay un poderoso “efecto de ocultación de energía “ (o masa, por el principio de equivalencia entre masa y energía).

El poderoso diablo de las fluctuaciones, además de arrugar el espacio-tiempo, enrolla parte de sus dimensiones para acentuar el “efecto de ocultación”. Si sólo se limitara a arrugarlo las fluctuaciones de la energía interferirían lo suficiente para no dejarnos ver el vacío como tal (al no depender del inverso de la distancia sino de su raiz cúbica). En la realidad dependen del inverso de la distancia: a grandes distancias su valor es despreciable, a pequeñas distancias es impresionantemente grande, contribuyendo a la impresión de un paradójico vacío “superdenso”. El diablo actúa como un verdadero mago: esconde ingentes cantidades de masa, detrás de sus arrugas enrolladas, hasta que hace “aparecer” el vacío. Sólo al acercarnos, “en las pequeñas distancias “, advertimos su truco. 



Reedición de un post de 2009. Un abrazo amigos.

2016/03/02

Las dimensiones extras. ¿Podemos demostrar que existen dimensiones enrolladas?


LHC

Según la teoría de supercuerdas en nuestro mundo existirían nada menos que 10 dimensiones, una dimensión temporal y  9 dimensiones espaciales. De estas dimensiones espaciales 3 serian las dimensiones ordinarias, que conocemos, y las otras 6 estarían enrolladas sobre sí mismas, alrededor de una distancia mínima llamada distancia de Planck, por lo que no serian observables.

Se han diseñado experimentos para tratar de descubrirlas en base a resultados anómalos sobre la atracción gravitatoria de masas a distancias microscópicas o  en  la violación de la conservación de la energía en colisiones en los aceleradores de partículas. También existe la posibilidad de que los mapas, cada vez más detallados, de la energía cósmica liberada en el Big Bang nos indiquen la huella de las dimensiones extras.

Pero puede que exista otra posibilidad de demostrar la existencia de dimensiones extra. Vamos a estudiar un curioso fenómeno que se da en sistemas fractales con un número grande de dimensiones. Partiendo de la hipótesis de que la energía de las fluctuaciones cuánticas del vacío tienen una estructura fractal, este fenómeno nos presentaría las dimensiones extra de una forma natural.

LHC

La dimensión fractal

La característica más especial de los fractales es su dimensión. Siempre es positiva y superior a su dimensión topológica. En cierta manera, de forma intuitiva nos indica la dimensión del espacio que son capaces de ocupar. Una cuartilla es un ejemplo de objeto de dimensión topológica 2, pero si la
arrugamos conseguimos que ocupe un espacio de mayor dimensión, entre 2 y 3 (normalmente fraccionario). Lo mismo ocurre con una línea (dimensión 1) que si la hacemos lo suficientemente intrincada e irregular es capaz de ocupar un plano (dimensión 2) e incluso un espacio (dimensión 3). Si la línea llega a ocupar el plano su dimensión fractal será 2 y si ocupa el espacio tridimensional, su dimensión fractal será 3. Conforme mayor sea su dimensión fractal, más intrincado e irregular será el fractal: a su dimensión topológica se le suma un coeficiente dimensional que completa el valor de su dimensión. Este coeficiente, normalmente fraccionario, nos indica el grado de irregularidad del fractal.
Dimensiones enrolladas
Dependencia espacial en los fractales

La líneas fractales gozan de una característica notable con relación a su dependencia espacial: una línea fractal capaz de recubrir el plano, para alejarse de cualquier punto arbitrario una distancia efectiva L debe recorrer una distancia media L2. A otra línea fractal capaz de llenar el espacio le ocurre algo similar: para alejarse de cualquier punto arbitrario una distancia efectiva L, deberá recorrer, como media, una distancia total L3. Es decir, el valor de los exponentes 2 y 3 se corresponde con las dimensiones fractales de las líneas.
Sabiendo la dimensión del fractal podemos calcular su dependencia espacial y a la inversa. Lo que ocurre con las curvas fractales (dimensión topológica 1) lo podemos generalizar a cualquier estructura fractal con mayor dimensión topológica (siempre que sea continua y razonablemente isótropa), dividiendo su dimensión fractal por su dimensión topológica.
Reducimos así la dispersión de resultados y encontramos más fácilmente símiles con ejemplos sencillos como trayectorias unidimensionales. A este cociente le llamaremos dimensión fractal relativa:

Dim. frac. relativa = (dimens. topológica+ coef. dimensional )/(dimens. topológica).
                                                     Dfr= (d+e)/d

En nuestro caso conocemos que la energía asociada al vacío depende inversamente de la distancia (L-1). Si fuera una simple línea (dimensión 1) encontraríamos que su dimensión fractal sería -1, pero como la energía es una magnitud tridimensional su dimensión fractal será -3, lo que obedece a un coeficiente dimensional negativo e igual a -6.

Tanto la dimensión fractal como el coeficiente dimensional negativos son resultados anómalos que obedecen a una causa sorprendente que estudiaremos a continuación. Siempre en base a la hipótesis fractal de las fluctuaciones que hemos planteado.
Volvamos a fijarnos en una simple hoja de papel que supondremos de espesor despreciable. Si la arrugamos estamos “fabricando” un fractal con dimensión mayor de 2 y menor de 3, es decir estamos sumando a su dimensión topológica un factor dimensional tanto mayor cuanto más intrincado sea su arrugamiento. ¿Pero qué ocurre si sobre la hoja lisa, sin arrugar, realizamos la operación de enrollarla sobre uno de sus extremos de la forma más fina posible?: A su dimensión topológica 2 le habremos restado una de sus dimensiones. En cierta forma, estamos realizando una operación con resultados opuestos al arrugamiento. En un caso se suma un factor dimensional y en el otro se resta.
Si sobre la expresión de la dimensión fractal relativa aplicamos la siguiente transformación de resta de dimensiones, que llamaremos T:

T: Valor (dimens. topológica) --> Valor (dimens. topológica – coef. dimensional),
                                                  T: (d) --> (d-e)

obtenemos la siguiente expresión para un universo con el mismo valor de dimensiones enrolladas que de coeficiente dimensional:


Dim. fractal relativa = (dimens. topológica)/(dimens. topológica – coef. dimensional).
                                                     Dfr= d/(d-e)

Si a esta expresión le igualamos el valor (-1) encontramos que el resultado anómalo obtenido se correspondería al de un universo con 6 dimensiones enrolladas y con un factor dimensional, también, de 6 (d= dimensión topológica=3).


Un poco más sobre el tema, visto de otra forma.

2014/12/30

La sorprendente energía del vacío



Geometría determinada por la energía del vacío

Las fluctuaciones de energía del vacío determinan la propia geometría del espacio. No son simples variaciones sobre un fondo fijo y estable, por lo que analizando su estructura podremos averiguar algo más sobre la referencia espaciotemporal que determinan. Por una parte son no diferenciables, hasta el punto de que son la causa directa de la desaparición del concepto clásico de trayectoria continua en el vacío. Por otra parte su estructura es auto semejante a cualquier escala:
Si tomamos cualquier distancia mayor que la distancia de Planck, por pequeña que sea (diámetro atómico, por ejemplo) y cualquier otra distancia de orden cósmico (diámetro de un cúmulo estelar), a una distancia doble le
corresponderá una energía del vacío mitad, y a una distancia mitad una energía del vacío doble (inverso de la distancia).
En base a estas simples propiedades consideraremos una hipótesis de trabajo:
que la estructura asociada a la energía del vacío de las fluctuaciones cuánticas es fractal  y trataremos de estudiar sus características.

Dimensión fractal

La característica más especial de los fractales es su dimensión. Siempre es positiva y superior a su dimensión topológica. En cierta manera, de forma intuitiva nos indica la dimensión del espacio que son capaces de ocupar. Una cuartilla es un ejemplo de objeto de dimensión topológica 2, pero si la arrugamos conseguimos que ocupe un espacio de mayor dimensión, entre 2 y 3 (normalmente fraccionario). Lo mismo ocurre con una línea (dimensión 1) que si la hacemos lo suficientemente intrincada e irregular es capaz de ocupar un plano (dimensión 2) e incluso un espacio (dimensión 3). Si la línea llega a ocupar el plano su dimensión fractal será 2 y si ocupa el espacio tridimensional, su dimensión fractal será 3. Conforme mayor sea su dimensión fractal, más intrincado e irregular será el fractal: a su dimensión topológica se le suma un coeficiente dimensional que completa el valor de su dimensión. Este coeficiente, normalmente fraccionario, nos indica el grado de irregularidad del fractal.

Dependencia espacial en los fractales   


La líneas fractales gozan de una característica notable con relación a su dependencia espacial: una línea fractal capaz de recubrir el plano, para alejarse de cualquier punto arbitrario una distancia efectiva L debe recorrer una distancia media L2. A otra línea fractal capaz de llenar el espacio le ocurre algo similar: para alejarse de cualquier punto arbitrario una distancia efectiva L, deberá recorrer, como media, una distancia total L3. Es decir, el valor de los exponentes 2 y 3 se corresponde con las dimensiones fractales de las líneas.
Sabiendo la dimensión del fractal podemos calcular su dependencia espacial y a la inversa. Lo que ocurre con las curvas fractales (dimensión topológica 1) lo podemos generalizar a cualquier estructura fractal continua (e isótropa) con mayor dimensión topológica, dividiendo su dimensión fractal por su dimensión topológica.
Reducimos así la dispersión de resultados y encontramos más fácilmente símiles con ejemplos sencillos como trayectorias unidimensionales. A este cociente le llamaremos dimensión fractal relativa:

Dim. frac. relativa = (dimens. topológica + coef. dimensional )/(dimens. topológica).

En nuestro caso conocemos que la energía asociada al vacío depende inversamente de la distancia (L-1). Si fuera una simple línea (dimensión 1) encontraríamos que su dimensión fractal sería -1, pero como la energía es una magnitud tridimensional su dimensión fractal será -3, lo que obedece a un coeficiente dimensional negativo e igual a -6.

Tanto la dimensión fractal como el coeficiente dimensional negativos son resultados anómalos que obedecen a una causa sorprendente que estudiaremos a continuación. Siempre en base a la hipótesis fractal de las fluctuaciones que hemos planteado.


2009/10/08

Algo más sobre fractales, su dependencia espacial

La dimensión de un fractal está íntimamente relacionada con la manera en que éste se extiende por el espacio. Su dimensión nos da la capacidad del fractal de recubrir un espacio de dimensión topológica superior a la suya, de hecho, una trayectoria fractal de dimensión 2 es capaz de recubrir el plano, y de dimensión 3 el espacio tridimensional.



Imaginemos que en un espacio de tres dimensiones nos encontramos con una especie de diablillo virtual moviéndose aleatoriamente, con total libertad, y tratando de recubrirlo por completo. Su trayectoria será una línea quebrada, con infinidad de recovecos, cuyo fin será pasar por todos los puntos del espacio. Como línea de trayectoria que es su dimensión topológica será la unidad, pero su capacidad de recubrir el espacio nos indica que estamos ante un objeto geométrico diferente a los típicos objetos euclidianos que hemos estudiado en la escuela, como el punto, la línea o el plano de dimensiones cero, uno o dos. Este tipo de objetos es lo que Benoît Mandelbrot llamaba en 1975 objetos fractales, palabra que inventó a partir del adjetivo latino “fractus” (roto, fracturado).

Dimensión fractal. La dimensión que define la trayectoria del diablillo ya no es la dimensión clásica de una línea (la unidad), sino que a ella debemos añadir un coeficiente dimensional que nos indica su grado de irregularidad. La suma de los dos coeficientes nos da un nuevo valor dimensional al que llamamos dimensión fractal. En este caso hacemos la siguiente suma: dimensión geométrica clásica (1) + coeficiente dimensional (2) = dimensión fractal (3).


Dependencia con la distancia. Hay un detalle más que nos da una idea del movimiento que lleva el diablillo. La distancia total que recorre al cabo de N de sus pasos debe ser sólo la raíz cúbica de su alejamiento efectivo a un punto arbitrario, es decir para alejarse una distancia efectiva d, de un punto cualquiera, su recorrido total deberá ser d3. Este exponente (3) nos está dando, también, la dimensión fractal del movimiento. En cierta forma es lógico que sea así, pues el volumen que intersecta y recubre la trayectoria es del orden del cubo de su distancia característica (Volumen = Lado3).

En una trayectoria espacial fractal:

(1) Distancia total recorrida = Distancia efectiva(dimensión fractal)


Siendo la dimensión fractal igual a la dimensión topológica más un coeficiente dimensional positivo, tanto mayor cuanto más intrincado sea el fractal, la expresión (1) quedaría:

(1) Distancia total recorrida = Distancia efectiva(dimensión topol. + coef. dimensional)



¿Puede la geometría del espacio modificar la dimensión fractal?. Imaginemos una trayectoria fractal que pasa desde un espacio de 3 dimensiones a otro de 2. En la realidad podría ser el paso gradual de una tubería de 10 cm. x 10 cm. a otra de 0,1 cm. x 1000 cm., del mismo caudal. Para, depende que movimiento, el paso podría suponer cambiar, prácticamente, de 3 a 2 dimensiones. En la nueva situación la dimensión topológica habría descendido en una unidad, por lo que para el mismo coeficiente dimensional (que depende de la irregularidad del fractal), la nueva dimensión fractal sería menor. La disminución de dimensiones topológicas actúa de forma opuesta (restando) a como actúa el coeficiente dimensional (sumando). Al final obtendríamos, en la práctica, un movimiento menos irregular e intrincado.


Y sobre todo esto, en plan un tanto informal, añado un articulito que se publicó en la web de la Real Sociedad Española de Física, en el foro de debate sobre Física Divertida . Pocos meses antes se había publicado en la revista ImasD de ciencia y tecnología (revista en papel, posteriormente electrónica y hoy desaparecida: www.ImasD-tecnología.com).Otro articulo posterior, también muy sencillo, publicado por la Revista Elementos, de la Universidad Autónoma de Puebla: El sorprendente vacío cuántico.


El diablo Aleaxis y el efecto de ocultación de masa.


Aleaxis es un simpático e inconsciente diablillo que no para de dar pasos, a tontas y a locas de forma aleatoria, en cualquier dirección del plano. Su trayectoria es discontinua, puede ser representada por una línea quebrada que acabaría recubriendo todo el plano. En su torpeza, para recorrer una distancia efectiva de “n” pasos debe dar como media n x n , es decir n2 pasos: su trayectoria, en realidad, representa un fractal, una estructura quebrada y discontinua de dimensión 2, la dimensión fractal que caracteriza al azar puro.

De forma similar, las fluctuaciones de energía del vacío (principio de incertidumbre) representan a otro diablo, esta vez real y poderoso, que hace mucho más interesante nuestro universo. Sin él el vacío estaría vacío, además de parecerlo, sería plano y estaría absolutamente quieto. Este diablo, un tanto escurridizo y nada torpe, arruga el espacio-tiempo y lo convierte en un fractal similar a la trayectoria de Aleaxis. Esta vez, para que nosotros observemos “n pasos” de fluctuación efectiva de energía, el diablo “da“ n x n x n pasos, es decir n3 .

Observando, solamente, los pasos efectivos de Aleaxis y sabiendo que su trayectoria es un fractal podemos inferir que existe un “efecto de ocultación de pasos”. De la misma forma, al observar las fluctuaciones efectivas de energía del vacío (son las únicas que podemos observar) deducimos que hay un poderoso “efecto de ocultación de energía “ (o masa, por el principio de equivalencia entre masa y energía).

El poderoso diablo de las fluctuaciones, además de arrugar el espacio-tiempo, enrolla parte de sus dimensiones para acentuar el “efecto de ocultación”. Si sólo se limitara a arrugarlo las fluctuaciones de la energía interferirían lo suficiente para no dejarnos ver el vacío como tal (al no depender del inverso de la distancia sino de su raiz cúbica). En la realidad dependen del inverso de la distancia: a grandes distancias su valor es despreciable, a pequeñas distancias es impresionantemente grande, contribuyendo a la impresión de un paradójico vacío “superdenso”. El diablo actúa como un verdadero mago: esconde ingentes cantidades de masa, detrás de sus arrugas enrolladas, hasta que hace “aparecer” el vacío. Sólo al acercarnos, “en las pequeñas distancias “, advertimos su truco.