Mostrando entradas con la etiqueta movimiento browniano. Mostrar todas las entradas
Mostrando entradas con la etiqueta movimiento browniano. Mostrar todas las entradas

2016/03/24

Una propuesta sobre la energía oscura


A proposal on dark energy


Admitiendo una hipótesis fractal para la energía de las fluctuaciones cuánticas del vacío y suponiendo que dicha energía sea capaz de recubrir las 9 dimensiones espaciales sugeridas por la teoría de supercuerdas...la energía oscura parece emerger de forma natural.

Admitting a fractal hypothesis for the energy of the quantum vacuum fluctuations and assuming that this energy is capable of coating 9 spatial dimensions suggested by superstring theory ... dark energy seems emerge naturally.
Composición cosmológica. Wikipedia



Fractales, el espacio que son capaces de ocupar
Una curva geométrica clásica tiene una dimensión topológica igual a la unidad, pero una curva fractal es capaz de llenar una superficie (dimensión 2) o, incluso, un espacio (dimensión 3). En estos caso se dice que tiene dimensión 2 ó dimensión 3, pues la dimensión fractal nos indica la capacidad que tiene la curva de ocupar un espacio de mayor dimensión a su dimensión topológica .

El que una curva fractal, cuya dimensión topológica es la unidad, sea capaz de ocupar un espacio de  dimensión 3 sería similar al hecho de que la energía del vacío de las fluctuaciones cuánticas (dimensión 3) fueran capaces de ocupar un espacio hipotético de 9 dimensiones (el sugerido por la teoría de supercuerdas). De hecho, la dimensión fractal relativa sería en los dos casos igual a 3.

Un fractal clásico, el movimiento browniano
Y hablando del espacio que es capaz de llenar un fractal, es interesante resaltar la dimensión fractal de un movimiento totalmente aleatorio en el espacio: el llamado movimiento browniano.
Dado que es capaz de cambiar aleatoriamente de dirección y explorar a lo largo de los tres ejes, podríamos aventurar que este tipo de movimiento llegaría  a recubrir un espacio de tres dimensiones, pero no es así. El movimiento browniano tiene dimensión fractal 2 y sólo sería capaz de llenar una superficie, no un plano.

Este movimiento goza de una propiedad muy curiosa. Imaginemos que medimos la distancia que es capaz de alejarse de un determinado punto; descubriremos que si se han dado n2 pasos, la distancia efectiva recorrida sólo será de n pasos. Es decir, la distancia total recorrida es igual a la distancia efectiva elevada a un factor de 2, que es precisamente su dimensión fractal. Esa misma propiedad es posible generalizarla a fractales de dimensión topológica mucho mayor que 1 si son continuos y, razonablemente, isótropos. Precisamente en estos casos la dimensión fractal relativa actúa de la misma forma que la dimensión fractal en las curvas.Volviendo al caso del movimiento browniano, la distancia efectiva está tomada en una dimensión (la línea recta) mientras que la distancia total recorrida está medida sobre el fractal, en las dos dimensiones que es capaz de recubrir.

Aplicando todo esto a la energía de las fluctuaciones del vacío
Si, con lo visto hasta ahora, nos centramos en la energía de las fluctuaciones cuánticas del vacío y suponemos que es capaz de recubrir las 9 dimensiones hipotéticas, que nos plantea la teoría de supercuerdas, encontraremos que la “energía total” es la “energía efectiva” elevada al cubo:  Energ. total = (Energ. efectiva)3  

La energía que hemos llamado “efectiva” es la energía de las fluctuaciones cuánticas del vacío en nuestras 3 dimensiones espaciales y depende del inverso de la distancia. A las distancias de nuestra vida cotidiana esa energía es completamente despreciable, pero conforme disminuyen éstas llega a hacerse significativa, hasta llegar a la llamada energía de Planck que se corresponde con la menor distancia posible llamada longitud de Planck (1,616199 x 10-35  metros). La energía que hemos llamado “total” sería la tomada en las 9 dimensiones hipotéticas. Si llamamos a “n” la distancia, la energía efectiva sería del orden de 1/n y la energía total sería una cantidad  que guarde la misma relación con 1/n que la relación (n3/n). El valor que encontramos es “n”. Es decir la energía “total” será proporcional a la distancia, no al inverso de la misma.                                              

(Ir a (+)Observaciones para entender mejor el hecho de aplicar la proporcionalidad de la relación (n3/n))



Conclusiones
Considerando la hipótesis fractal para la energía de las fluctuaciones cuánticas del vacío y que dicha energía sea capaz de recubrir el espacio de 9 dimensiones sugerido por la teoría de supercuerdas, ¡¡¡ encontramos una energía asociada a estas 9 dimensiones que coincidiría en magnitud con la llamada energía oscura!!! Una energía proporcional a la distancia, a diferencia de la energía de las fluctuaciones del vacío cuántico que es inversamente proporcional, capaz de mantener la aceleración expansiva del universo.







(+)Observaciones. Relación necesaria entre números naturales para averiguar la dimensión fractal.
Curva_Koch.png
Curva de Koch

Observamos en la figura la construcción de un fractal clásico llamado curva de Koch. La distancia en línea recta (en una dimensión) entre el extremo  A y el extremo E mide 3 segmentos, la distancia sobre el fractal entre A y E (a través de las dos dimensiones del plano) mide 4. Estas medidas son las que determinan la dimensión fractal de la curva: (log 4)/(log 3).

Imaginemos que al medir en línea recta el segmento AE encontramos un valor fraccionario, por el tipo de unidad de medida utilizada, por ejemplo 1/4. Con esa misma unidad de medida la distancia recorrida sobre el fractal sería de 1/3. Al tratar de hallar ahora su dimensión fractal haríamos el cociente: (log 1/3)/(log 1/4) y el resultado sería distinto, lo que resulta absurdo. Tenemos que encontrar la misma relación entre los dos segmentos pero expresada en números naturales. La encontramos al dividir estas dos fracciones:
1/3:1/4 = 4/3 , y el resultado 4 y 3 es el que buscamos.

En el caso de la proporción directa utilizada más arriba, con 1/n  y la relación (n3 / n) hemos hecho lo mismo. Podemos utilizar relaciones de proporcionalidad entre los segmentos, para tratar de encontrar una sencilla relación entre números naturales, aunque lógicamente, no las podremos utilizar entre los logaritmos de dichos segmentos. Abundando sobre el tema podéis leer este documento y ver este post.

2009/03/20

El ritmo justo del azar

El azar, el puro azar tiene su "ritmo" justo de cambio. Ni más, ni menos. Lo podremos "tentar" ofreciéndole más y más grados de libertad ... él los tomará, pero no conseguiremos ni retrasar, ni acelerar su ritmo bajo ningún concepto. Siempre seguirá fiel a sus "principios", que básicamente son muy sencillos. En cierta forma nos está dando una lección que deberíamos aprender. Referido al movimiento browniano y a su capacidad de recubrir dos dimensiones. Cuando lo trasladamos a dimensiones superiores sigue desplazándose por todas las dimensiones posibles, pero sólo es capaz de seguir recubriendo dos, contra lo que podría parecer.

Cada vez que lanzamos una moneda al azar puede salir cara o cruz, independientemente del resultado que hayamos obtenido en un lanzamiento anterior. Así de simples son las leyes que rigen el puro azar.


A partir de los resultados que vayamos obteniendo en sucesivos lanzamientos podemos confeccionar una tabla como la de la figura, que se corresponde con una tanda de 100 lanzamientos. Esta tabla y la que vamos a considerar, que en general puede contener miles de resultados es algo estático, sin movimiento, pero nos ayudará a desentrañar los entresijos del movimiento al azar que llamamos movimiento browniano, en honor al naturalista escocés Robert Brown que lo observó a principios del siglo XIX, cuando estudiaba suspensiones en el agua de granos de polen y esporas de musgos. Es un movimiento en zig zag, arbitrario, hacia cualquier dirección posible de desplazamiento.

A partir de una tabla, como la de la figura, tomaremos parejas consecutivas de unos y ceros.La primera parte de la pareja será la x y la otra la coordenada y. Los unos significarán "avanza 1" y los ceros querrán decir "retrocede 1". En un plano partiremos del punto (0,0) y conforme vayamos traduciendo la tabla a movimientos en el plano estaremos representando el movimiento aleatorio que hemos llamado browniano.



Azar y dimensión fractal
En un movimiento lineal cada uno de los puntos de su trayectoria viene definido por un solo número que nos indica su distancia al origen, se habla de que tiene una dimensión (el largo). En un plano necesitamos dos números para identificar cada uno de sus puntos, las coordenadas x/y o el largo y el ancho, por lo que decimos que tiene dos dimensiones. El movimiento browniano, como movimiento lineal que es tiene dimensión topológica 1, pero asombrosamente es capaz de recubrir el plano, de llenarlo. De ahí que digamos que su dimensión como fractal sea 2, porque es capaz de recubrir un espacio de dimensión 2. A las figuras tan tortuosas e intrincadas como este movimiento aleatorio, Benoit Mandelbrot las llamó fractales, del latín "fractus" que significa fracturado o roto, discontinuo.Y este movimiento es, sin lugar a dudas, muy buen representante de esta nueva categoría de objetos geométricos omnipresentes en la naturaleza.

Cada momento el movimiento aleatorio avanza o retrocede en sus coordenadas x ó y, independientemente de lo que hiciera en el instante anterior, tiene absoluta libertad para desplazarse a través de cada una de las coordenadas. Esta idea se tiende a trasladar cuando el movimiento ocurre en un espacio de tres dimensiones como nuestro espacio ordinario, o de más dimensiones, y es correcta. De la misma forma tendemos a pensar que, también, en un espacio tridimensional el movimiento browniano será capaz de llenarlo, o cubrirlo, por completo. Esa es la idea que tenía yo al empezar a estudiarlo y la idea que ha tratado de defender algún lector, en alguna ocasión, a capa y espada, pero como demostraremos es una idea equivocada.

La magia del número 2
El valor 2 que caracteriza la dimensión fractal de este movimiento, también se puede definir de una manera muy intuitiva: necesita realizar N2 pasos para alejarse de un punto cualquiera de referencia, sólo, N pasos efectivos. En tres dimensiones debería efectuar N3 pasos totales para alejarse, sólo, N pasos efectivos, pero como veremos eso no depende del número de dimensiones o grados de libertad sino de una característica independiente de las propias del espacio en que se mueve. Para demostrar esto nos fijaremos en la definición intuitiva que relaciona la distancia total con la efectiva.


La distancia total que recorre la partícula animada por un movimiento browniano es proporcional al número de pasos N, sin embargo la distancia efectiva se encontraría después de sumar los desplazamientos positivos y negativos. Para definir el resultado de esa suma existe una medida de dispersión apropiada que llamamos desviación típica, que para la distribución binomial con la que se corresponde el azar como lo hemos considerado resulta ser la raíz_cuadrada(N/4), pues es igual a raíz_cuadrada(Npq), siendo n = p = 1/2, ya que la posibilidad de que salga 0 ó 1 es la misma, y su suma debe ser la unidad.

Después de N pasos, la distancia efectiva para cada dimensión, considerada independiente, será raíz_cuadrada(N/4). Si consideramos 3 dimensiones la distancia efectiva será raíz_cuadrada(3 N/4). Esta magnitud la comparamos con la distancia total recorrida después de los N pasos: N raíz_cuadrada(3). Para N suficientemente grande sólo resulta significativa la comparación entre N y raíz_cuadrada de N, independientemente de que multipliquemos los dos términos por 3, 4, 5, ... d, cualquiera que sean las dimensiones del espacio considerado. De la comparación anterior resulta el valor de 2 de su dimensión fractal, o la consideración de realizar N2 pasos totales para sólo conseguir N efectivos.

Recapitulando
El movimiento browniano sólo es capaz de recubrir un espacio de 2 dimensiones (un plano). En un espacio de 3 ó más dimensiones su "ritmo" de distanciamiento de cualquier punto arbitrario, que consideremos como referencia, no es lo suficientemente "lento" para poderlo recubrir. Para recubrir un espacio de 3 dimensiones su ritmo de distanciamiento debería ser de N3 pasos totales para recorrer sólo N (dimensión fractal 3), para un espacio de 4 dimensiones serían N4 pasos totales para sólo N efectivos, y así sucesivamente. Sin embargo, el ritmo del movimiento lo imprime la desviación típica de la distribución binomial, que no depende de la dimensión del espacio, y cuyo valor es invariablemente igual a la raíz_cuadrada (N/4). Por eso, sea cualquiera el espacio considerado con tres o más dimensiones la dimensión fractal del movimiento browniano seguirá siendo 2. Para aumentar la dimensión fractal del movimiento deberíamos conseguir que cada nuevo paso tuviera "memoria" del resultado de los pasos anteriores y así disminuir su "ritmo" de alejamiento. Es como si en una carrera de 2 Km. nos obligaran a cumplimentar 200 tareas diferentes a lo largo de diferentes puntos del trayecto. Para una cierta velocidad conseguimos cumplimentar sólo 100 tareas y nos damos cuenta que para cumplimentar las 200 debemos disminuir el ritmo, o de lo contrario será imposible. De la misma manera el azar tiene su "ritmo" y ese ritmo sólo le permite recubrir un plano, no un espacio de 3 ó más dimensiones.

2007/03/07

Vacío cuántico, puro azar

Todo el conocimiento se encuentra intimamente relacionado, cada eslabón cuenta y la importancia del mismo puede ser difícilmente calibrado en el momento que surge.En 1827 un botánico escocés, Robert Brown, estudiaba algo aparentemente "insignificante" la suspensión de partículas de polen en una solución acuosa, y observó que las partículas estabán animadas por un movimiento caótico e incesante.Entonces no pasaba de ser una simple curiosidad, primero atribuida a la propia vitalidad del polen, pero con el tiempo, sirvió como base para que, en 1905 un gran físico, Albert Einstein publicara un artículo sobre el movimiento requerido, por la teoría cinética molecular, de pequeñas partículas suspendidas en un líquido estacionario. Por métodos estadísticos obtuvo una ecuación que representaba el movimiento de las moléculas de agua golpeando a los granos de polen o a cualquier otro pequeño cuerpo. En esta ecuación figuraba el tamaño de la molécula de agua, lo que resulta sorprendente pues entonces todavía había científicos que no creían en la existencia real de átomos y moléculas y sólo los consideraban ficciones teóricas útiles para comprender las reacciones químicas.

En este trabajo, Einstein explicaba el movimiento descubierto por Brown (movimiento browniano) y proporcionaba una evidencia experimental de la existencia de los átomos. Dio también un considerable y decisivo impulso a la mecánica estadística y a la teoría cinética de los fluidos. Setenta años después, el matemático e ingeniero Benoït Mandelbrot inventa el término fractal y escribe el influyente artículo "Fractals: Form, chance and dimension", que practicamente formalizó el nacimiento de una nueva rama de las matemáticas: la geometría fractal. El movimiento browniano se define como un fractal de dimensión fractal 2, un movimiento aleatorio puro capaz de cubrir el plano (de ahí el valor de su dimensión fractal igual a 2).


Mientras tanto, se había descubierto el cuanto de acción (h) y se había desarrollado una nueva y revolucionaria rama de la física: la mecánica cuántica. El vacío absoluto e inmutable de la mecánica clásica se poblaba de partículas y energías virtuales (*) gracias a la existencia de ese mínimo de acción posible, pues su existencia permite que se "cree" y se "destruya" una cantidad de energía E durante un tiempo T, siempre que su producto (E) x (T) sea menor que el valor del cuanto de acción de Planck (h). El producto (E) x (T) de una región del espacio vacío queda acotado por h pero puede adoptar cualquier valor de forma aleatoria. Este producto no tiene que ver, aparentemente, nada con el movimiento browniano pero, sin embargo representa el mismo azar puro. Sus valores aleatorios, convenientemente representados, no podríamos diferenciarlos de la trayectoria de una partícula de polen bombardeada por moléculas de agua.

La discontinuidad (salto en su valor) y la aleatoriedad que presenta el producto (E) x (T) de las de las fluctuaciones cuánticas del vacío, le confieren características de objeto fractal ( ver condiciones de Kenneth Falconer para los fractales) . Su dimensión fractal dividida por su dimensión topológica sería justamente 2, el valor de la dimensión fractal del movimiento browniano (en las variables con dimensión topológica mayor que la unidad es muy conveniente, para evitar la dispersión de valores y facilitar la homogeneidad, que en lugar de dar la dimensión fractal se de el cociente entre ésta y la dimensión topológica).

(*)Como curiosidad, es interesante conocer el llamado efecto Casimir, por el cual dos placas de metal muy cercanas (separación del orden de micras) experimentan una presión que tiende a atraerles debido a las condiciones de no cancelación que producen estas placas en el vacío cuántico.

2006/06/06

La magia del número 2.


Si consideramos una partícula moviéndose de forma aleatoria sobre un plano supondremos que no podemos observar ningún tipo de orden, pero nos estaremos equivocando. Tomando P como la media de amplitud de sus pasos y fijándonos después de un número grande N, de dichos pasos, observaremos que para que se aleje N1 pasos efectivos, de un punto arbitrario, habrá tenido que dar (N1)2 pasos totales. El exponente 2 representa, realmente, la dimensión fractal de este movimiento llamado movimiento browniano.

El azar puro y duro está gobernado por ese número mágico. En nuestro caso nos dice que si bien la trayectoria de cualquier partícula es una línea y como tal tiene dimensión topológica 1, la trayectoria aleatoria es de tal desorden que es capaz, en cierta forma, de cubrir el plano por el que se mueve ( la dimensión topológica del plano es 2).

La acción ( producto de energía por el tiempo) de las fluctuaciones cuánticas del vació está, también, gobernada por ese número mágico. Si representáramos sus valores, observaremos que van llenando una región del plano (E) x (t) acotada por la hipérbola (E) x (t) < cuanto de acción de Planck.

Laurent Nóttale complementó la definición de Richard Feynman (1965) y A. Hibbs sobre las trayectorias virtuales típicas de una partícula cuántica, indicando que los caminos cuánticos posibles son, en número infinitos, y todos son curvas fractales caracterizadas por una propiedad geométrica común: su dimensión fractal es 2.