Fractales por dislocación o desplazamiento (de dimensión entera)
![]() |
| Helge von Koch |
Sobre el ESPACIO-TIEMPO FRACTAL, sobre física cuántica, fractales... ciencia desde un punto de vista humano. La aventura científica se convierte en la búsqueda de las más sencillas y potentes simetrías (belleza) capaces de descifrar, de la forma más simple, la aparente complejidad del mundo que nos rodea.
![]() |
| Helge von Koch |
Publicado por
Salvador Ruiz Fargueta
a las
8:09 p. m.
0
comentarios
Etiquetas: fractal by displacement, fractal por dislocación, Georg Cantor, Koch, polvo fractal de dimensión entera
Como comentaba en el post sobre el “Vacío cuántico, vacío fractal ”, la existencia del cuanto de acción ha destruido por completo la propia noción de trayectoria clásica.
Laurent Nóttale complementó la definición de Richard Feynman (1965) y A. Hibbs sobre las trayectorias virtuales típicas de una partícula cuántica, indicando que los caminos cuánticos posibles son, en número infinitos, y todos son curvas fractales caracterizadas por una propiedad geométrica común: su dimensión fractal es 2.
En algunos foros he leído que no se entendía bien lo de la dimensión fractal entera, en este caso 2, pero tal como indicaba en la expresión general de la dimensión fractal:
Dimensión fractal = dimensión topológica + factor dimensional
( El factor dimensional, siempre positivo, es tanto mayor cuanto más irregular es el fractal: indica la capacidad de ocupar más espacio del que indica su propia dimensión topológica)

A partir de una recta se le van quitando los segmentos centrales hasta conseguir una serie infinita de puntos aislados, de ahí el nombre de polvo. Si restablecemos de forma escalonada el segmento que antes le quitábamos, el nuevo fractal sigue teniendo estructura quebrada y autosemejante , pero ahora en lugar de tener una dimensión fractal igual a log 2/ log 3 tiene una dimensión entera: log 3/ log 3 =1. Nos ayuda, también, a entender como se calcula, de forma práctica, la dimensión fractal de una figura.
Publicado por
Salvador Ruiz Fargueta
a las
9:10 a. m.
3
comentarios
Etiquetas: Cantor, fractal dimension entera, Koch, Peano
La curva de Koch es un fractal clásico que nos puede orientar sobre el procedimiento de cálculo de la dimensión fractal. En la figura observamos tres iteraciones que nos muestran su construcción: sobre el segmento inicial AB volvemos a construir la figura completa en la segunda iteración y de la misma forma hacemos en la tercera.
El cociente (Log 4)/ (Log 3) da el valor de la dimensión fractal de la figura. El número 4 indica el número de divisiones, mientras que el número 3 es el inverso de la razón de homotecia : el todo es descomponible en 4 partes (segmentos AB,BC,CD,DE) las cuales se pueden deducir de él por una homotecia de razón 1/3 (los cuatro segmentos se proyectan sobre un segmento de longitud 3 : AB,BD,DE).
Si medimos la distancia entre los puntos AE con una regla cuya mínima medida sea 3, obtendremos que dicha distancia es 3. Por el contrario, si medimos la distancia con una regla de mínima distancia 1, la medida AE nos dará como resultado 4. El cociente entre los logaritmos de estos números nos darán la dimensión fractal que apuntábamos más arriba. Es evidente que para un segmento lineal encontraríamos el mismo valor para las dos medidas y el cociente entre sus dos logaritmos sería la unidad, que es la dimensión de una línea recta clásica euclideana.
En la curva de Koch la relación logarítmica de las distancias 4 y 3 nos dan la dimensión fractal. El valor 4 determina el patrón de irregularidad y el valor 3 , en cierta forma, su proyección. Para el vacío cuántico los valores son N y 1/N ( relación, en el post anterior, entre el lado y el perímetro del Ovillo de Alba), lo que nos da una idea de las formidables energías implicadas en lo que llamamos vacío cuántico: para una energía de magnitud N sólo se proyectaría en nuestro espacio tridimensional un valor 1/N.
Publicado por
Salvador Ruiz Fargueta
a las
12:17 p. m.
2
comentarios
Etiquetas: dimensión fractal, Koch, vacío cuántico
Fractales