2007/09/16

El Big Bang, una explosión en perfecto orden


La curvatura del espacio-tiempo se manifiesta como un efecto marea. Si caemos hacia una gran masa sentiremos que nuestro cuerpo se estira en la dirección de caida y se aplasta en las direcciones perpendiculares a aquella. Esta distorsión de marea aumenta a medida que nos acercamos, de forma que para un cuerpo que caiga a un agujero negro de varias masas solares el efecto lo destrozaría, destrozaría sus moléculas, sus átomos, después, sus núcleos y todas las partículas subatómicas que lo constituyeran. Un verdadero efecto desorganizador, y motor de desorden, de la gravedad en su máximo exponente. No sólo la materia, sino el propio espacio-tiempo encuentran su final en las llamadas singularidades del espacio-tiempo que representan los agujeros negros. Son consecuencias que se deducen de las ecuaciones clásicas de la relatividad general de Einstein y de los teoremas de singularidad de Penrose y Hawking.

Si los agujeros negros son singularidades en donde colapsa la materia y el propio espacio-tiempo, existen otro tipo de singularidades. Utilizando la dirección inversa del tiempo nos encontramos con la singularidad incial en el espacio-tiempo que llamamos Big Bang. Esta singularidad representa todo lo contrario, la creación del espacio-tiempo y de la materia. Aunque podríamos pensar que hay una completa simetría entre los dos fenómenos, cuando los estudiamos con detenimiento encontramos que no pueden ser exactamente inversos en el tiempo. La diferencia entre ellos contiene la clave del origen de la segunda ley de la termodinámica, la famosa ley que dice que :"La cantidad de entropía, o desorden, de cualquier sistema aislado termodinámicamente tiende a incrementarse con el tiempo, hasta alcanzar un valor máximo". También contine la clave de la llamada flecha del tiempo.

La entropía (o medida del desorden) en un agujero negro es elevadísima. De hecho, para hacernos una idea, la compararemos con la entropía que suponíamos que contribuía en mayor manera al total del Universo, la correspondiente a la radiación de fondo. Esta entropía, en unidades naturales, considerando la constante de Boltzman como unidad, es del orden de 108 por cada barión del Universo, mientras que la entropía por barión en el Sol es del orden de la unidad. Mediante la fórmula de Bekenstein-Hawking se encuentra que la entropía por barión en un agujero negro de masa solar (en agujeros más masivos es todavía mayor) es del orden de 1020 en unidades naturales.

Para un Big Crunch, o "crujido" final en que colapsara todo el Universo en un gigantesco agujero negro, la entropía por barión sería del orden de 1031. La existencia de la segunda ley de la termodinámica sería imposible en un universo que emergiera con ese desorbitado desorden,siguiendo una simetría temporal entre singularidades de colapso y de creación. De hecho el Big Bang fue una gran explosión en completo orden. Dio lugar a nuestro espacio-tiempo y a la materia de nuestro Universo y desde entonces ha ido aumentando la entropía, según la segunda ley, y marcando una flecha del tiempo que va desde este inicio al final del Universo.





El orden inicial, tal como apunta Penrose y se comenta en la entrada "las estrellas, fuente de orden y de baja entropía", es el responsable de todo nuestro orden actual y futuro, y de la organización que presentan nuestros organismos vivos.


Hasta tal punto fue ordenada la explosión inicial, que la distorsión destructiva a la que me refería al principio, que tiende a infinito en un agujero negro, fue igual a cero en el Big Bang. Esta distorsión del espacio-tiempo, con conservación de volumen, debida al tensor de curvatura espacio-temporal llamado Weyl, fue nula.

Comentario del autor (18-09-2007):
A diferencia de lo que ocurre en la implosión de la materia para formar un agujero negro, que es un fenómeno capaz de crear cantidades inmensas de entropía (o desorden), en el momento de la "explosión" del Big Bang la entropía fue mínima, de hecho es la única forma en que se puede dar un Universo con la segunda ley de la termodinámica. A partir de entonces la entropía no ha dejado de crecer.

Lo que ocurre es que la "explosión" del Big Bang no lo fue en el sentido que conocemos: algo que estalla en el espacio y en el tiempo, fue el propio "estallido" del espacio-tiempo. Para entenderlo se suele poner el ejemplo de un globo cuando se hincha. Debemos imaginar que la superficie del globo es el propio espacio-tiempo que se ensancha aunque de forma muy violenta, formando el propio espacio-tiempo que conocemos. No hay un centro estático de la explosión, porque todo se aleja de todo, tal como observamos en la expansión actual del Universo.

9 comentarios:

Anónimo dijo...

He oido que el cero absoluto es el estado de maxima entropia ,que se dara en el uniberso en un futuro muy lejano.Por otro lado en un sistema cerrado la entropia siempre aumenta ,y tiene una estrecha relacion con la temperatura a mayor temperatura mayor entropia.Pregunto ¿como es que en el big bang la temperatura era desorvitada y la entropia nula o casi nula?.Salvador tu blog es fantastico,sigue asi.
Aclarame la pregunta,gracias.

Salvador dijo...

El Big Bang fue una singularidad en la que se creo el espacio-tiempo y la materia. Las condiciones existentes en ese estado no tienen nada que ver con las condiciones que encontramos en cualquier otro instante del Universo.
La máxima entropía que se dará en la llamada muerte térmica del Universo, lo será porque toda la energía útil se irá conviertiendo en energía calorífica, que es la energía más degradada. Y la temperatura, conforme se vaya expandiendo el Universo bajará tendiendo al cero absoluto.

Un saludo amigo

Anónimo dijo...

Gracias por la aclaracion.Otra cosa,si fue una singularidad del espacio tiempo ,donde este se fue creando y donde con posterioridad se creo la materia .!!!¿Que fue lo que revento?,¿el propio espacio tiempo?,¿pura energia?,¿hecha de que?!!!.Un saludo Salvador.

Anónimo dijo...

Magnífico blog.

Anónimo dijo...

Para mi que en realidad la singularidad BIG BANG fue resultado del colapso de una hipernova, pero en una forma un tanto similar mas que a un punto que revienta a una burbuja del universo del que salio éste. en la superficie de esa burbuja están las partículas como dibujos en la hipersuperficie.

Anónimo dijo...

¿ la entropía no es la energía(temperatura),sino como se reparte est?.
¿La máxima entropía sería el reparto de la energía por igual en el espacio?.
Si fuera así, y suponemos que el universo en el Big Bang era una matriz de un solo elemento, ¿cuanta entropía habría si no se puede repartir la energía porque la matriz solo tenía un elemento? Ni 0 ni infinito. No existía porque no hay espacio donde repartir la energía, al igual que no había tiempo porque no hay donde moverse.
Si la matriz tuviera 2 elementos ya si habría entropía, porque habría multiples posibilidades de como repartir la energía, pero con un solo elemento solo hay una, toda allí.

Anónimo dijo...

bueno yo digo que esta pagina es muy buena para los estudiantes para tareas y ttodo eso que sigan asi saludos

Anónimo dijo...

bueno yo digo que esta pagina es muy buena para los estudiantes para tareas y ttodo eso que sigan asi saludos

Anónimo dijo...

Si la entropía lleva todo al "desorden", como es q llegó a haber tanto orden. La entropía disminuye en reacciones naturales?