2012/03/03
2012/01/02
Polvo fractal con dimensión entera
Dimensión fractal = dimensión topológica + factor dimensional

Publicado por
Salvador Ruiz Fargueta
a las
2:58 a. m.
3
comentarios
2011/12/02
Dios, Hawking, los físicos y la metafísica
Publicado por
Salvador Ruiz Fargueta
a las
1:06 p. m.
18
comentarios
2011/10/18
Fractales naturales y una reflexión informal

Todo son simplificaciones. Si una línea real la ampliamos, veremos una inmensa cantidad de imperfecciones, de discontinuidades, que se incrementan según el aumento con que las observemos. Cualquier superficie lisa esconde multitud de cortes y hendiduras. Simplificamos y tratamos así de construirnos un mundo más sencillo, que no siempre está tan cerca de la realidad como creemos.

La continuidad de la materia ya se vio rota por el átomo, materia discreta que forma la materia "continua" que vemos y tocamos. Después se rompió la continuidad de la energía por obra y gracia del cuanto de acción ( h ) . La energía pasó a estar cuantificada, en “paquetes” de mayor o menor magnitud, según su mayor o menor frecuencia de vibración. La realidad pasó a ser granulada, como una película fotográfica. El cuanto de acción, que define el mínimo "grano de realidad", no permite un grano más fino y , a la vez , estable... Las consecuencias fueron terribles: el cuanto acabó con la nada, con el vacío, por pura incompatibilidad.

El vacío absoluto y estable suponía un grano infinitesimal, inexistente, suponía un cuanto de acción nulo, que no existe. El vacío absoluto y estable, la nada, desapareció y dejó en su lugar a un inmenso fractal llamado el espacio-tiempo.
Todo fractal esconde algo entre sus innumerables quebrados y vericuetos. ¿ Qué escondía la nueva nada? Escondía partes de ella misma, y dejó al descubierto la incertidumbre de Heisenberg, el mínimo "grano" de realidad.
Reedición de la entrada de La bella teoría de hace unos tres años.
Publicado por
Salvador Ruiz Fargueta
a las
7:09 p. m.
3
comentarios
Etiquetas: fractalidad, reflexión informal
2011/07/20
El efecto mariposa, un atráctor extraño
El orden lleva asociado un grado importante de predicción, al caos le sucede lo contrario. Los sistemas lineales, representan el orden, son predecibles y cómodos de manejar, de ahí nuestra tendencia a generalizarlos. Ante un sinfín de situaciones generalizamos, proyectamos los datos del presente para tratar de averiguar un comportamiento futuro y casi siempre nos va bien. Pero existen sistemas que se resisten: pequeñas variaciones, incertidumbres, en los datos iniciales desembocan en situaciones finales totalmente descontroladas e impredecibles. Son los llamados sistemas caóticos (En la figura, atractor extraño "poisson_saturne" hecho con el programa Chaoscope).
Para estudiar estos sistemas se requiere de una metodología diferente. Su estudio se realiza en el llamado espacio de fases, un espacio abstracto en el que se representan todas las variables dinámicas del sistema. Por ejemplo, un péndulo simple ideal se vería representado por dos variables, la velocidad y la posición de la masa suspendida. Su representación podría hacerse, por tanto, en el plano y sería una circunferencia. Cada punto de la misma representaría dos cantidades, la velocidad y la posición, en ese momento.
Esa figura en el espacio de fases, a la que se aproxima el fenómeno estudiado, se le llama su atractor. En los sistemas no caóticos el atractor suele ser un punto, una circunferencia, una figura geométrica conocida, pero en los sistemas caóticos presenta una forma “extraña”, de ahí que reciba el nombre de “atractor extraño”, con una dimensión fraccionaria o fractal (En la figura, atractor de Lorenz, en 3D, con el programa Chaoscope).
El primero de éstos fue hallado, por casualidad, por el meteorólogo Edward Lorenz cuando trataba de encontrar un modelo matemático que permitiera predecir el comportamiento de grandes masas de aire. Consiguió ajustar el modelo a sólo tres variables que indican como cambian la velocidad y la temperatura del aire a lo largo del tiempo (atractor de Lorenz).
Después de haber estudiado el modelo, volvió a introducir los datos iniciales - esta vez con menos decimales- y el resultado que obtuvo fue completamente diferente del anterior. Cuando reflexionó sobre los resultados se dio cuenta que el sistema era extremadamente sensible a las condiciones iniciales: pequeñas perturbaciones en los datos de partida tienen una gran influencia sobre el resultado final. Sus ecuaciones captaban la esencia de la verdadera atmósfera. “Aquel primer día ( invierno de 1961) decidió que los pronósticos amplios estaban condenados a la extinción”. Pero vio más que azar en su modelo del tiempo: una fina estructura geométrica, orden disfrazado de casualidad.
Para explicar de una manera gráfica – y exagerada - la cuestión se le ocurrió que el simple aleteo de una mariposa, que no se hubiera tenido en cuenta en los datos iniciales, podía modificar una predicción hasta hacerla totalmente inviable después de un determinado tiempo.
Sobre el efecto mariposa se han escrito cientos de artículos, novelas, canciones y se han hecho películas. En un artículo de Enrique Dans, profesor del Instituto de Empresa, se compara el “ecosistema de Internet” con los sistemas no lineales y complejos como el tiempo atmosférico:” Las variables en juego (en Internet) no son tantas: si en el clima hablamos fundamentalmente de velocidad y temperatura del aire, en Internet hablamos de visitas, vínculos y cuestiones afines. Pero el posible impacto de una variación infinitesimal en medición de las variables de origen puede tener un impacto brutal en los resultados finales,...” . “ Criterios que todo el mundo, aparentemente, da por buenos, como el sacrosanto PageRank de Google, la cuenta de vínculos entrantes de una página web que lleva a cabo Technorati o los rankings de popularidad de Alexa son medidas completamente burdas, groseras, carentes de inteligencia, que responden únicamente al deseo e intentar reducir la incertidumbre, pero que lo hacen, en general, bastante mal.”
En este sentido nos encontramos en la era anterior al descubrimiento del efecto mariposa, utilizamos métodos lineales para tratar de analizar los sistemas complejos, no lineales, en donde las realimentaciones de todo tipo, y a todos los niveles, son la propia esencia del sistema. Necesitamos conocer "el atractor extraño de Internet".
Para saber más:"Caos,La creación de una ciencia", de James Gleik. Seix Barral. Barcelona 1988. Un magnífico libro.
Nueva edición del post del mismo título de fecha 17/10/2006. Un saludo y feliz verano amigos.
Publicado por
Salvador Ruiz Fargueta
a las
11:08 a. m.
6
comentarios
Etiquetas: atractor, efecto mariposa
2011/06/27
La información, el azar y el número Pi
La información se nos presenta como una entidad fundamental, no sólo a nivel de la estructura física de la materia (entropía) sino de la propia estructura de los números trascendentes, tales como Pi , y también del resto de los números irracionales, que constan de infinitos decimales dispuestos de forma aleatoria, como por ejemplo la raíz cuadrada de 2. El azar que encontramos en infinidad de procesos naturales, o en los números, es extraordinariamente difícil de simular de forma artificial, lleva asociado un nivel de información neutro (cero información añadida), que en cierta forma es una restricción poderosa y de gran calado.
El número Pi es, junto con el número e, uno de los números llamados trascendentes más famoso. Es la relación entre la longitud de la circunferencia y su diámetro, y aparece en infinidad de expresiones matemáticas o físicas. Desde la antiguedad, muchas veces por cuestiones prácticas, se ha tratado de calcular el mayor número de decimales para conseguir más precisión en las medidas (en la figura, Arquímedes de Siracusa - 250 a.C - lo calculó con la aproximación: entre 3+10/71 y 3+1/7). Casi a semejanza de los alquimistas que trataban de conseguir la piedra filosofal, los geómetras de todos los tiempos han tratado de hallar la cuadratura del círculo. Actualmente gracias a la potencia de cálculo de nuestros ordenadores se han conseguido millones de sus decimales. Teóricamente tiene infinitos decimales y deben estar situados de forma completamente aleatoria, de manera que al cabo de miles de millones de trillones de decimales que busquemos podremos encontrar cualquier combinación, que convenientemente codificada podría contener: El Quijote, Romeo y Julieta, la Biblia o este propio escrito.
Existen varias páginas que encuentran cualquier combinación de números entre las cifras de Pi, y nos dicen a partir de qué decimal se puede encontrar. Al reflexionar sobre ello, pensé que se podría codificar, de forma ventajosa, cualquier información sobre esta base y me puse manos a la obra. Busqué la posición de una codificación al azar, el número 11, y la encontré a partir del decimal 94. El número 111 a partir del decimal 153 y así hasta el 11111111 que se encuentra a partir de la posición 159 090 113, en la ristra de decimales del número Pi. Pronto me di cuenta de que no significaba ninguna simplificación pues para dar la posición dentro de Pi de un determinado código, se necesitarían, en general, un número de dígitos igual o superior a la propia codificación que se busca. Repetí la búsqueda para la codificación 121212 que se encuentra a partir de la posición 241 987 (seis dígitos para definir la búsqueda del código 121212) : 3,14 .......28979301308065657163 121212 07914290705421508889........ En base a esta suposición el Quijote se encontraría codificado, en los dígitos del número Pi, alrededor del decimal 4x101000000 (un 4 seguido de un millón de ceros), más o menos.
En cierta forma, podríamos decir que la información mínima ni se crea ni se destruye, simplemente se transforma. El azar no debe llevar implícitamente ninguna información que pueda después utilizarse y esto lo encontramos en infinidad de procesos naturales, o en los números. Supongo que debe ser así, pues no sería lógico que pudiésemos codificar El quijote, por dar un código como ejemplo, con otro código mucho menor, irrazonablemente menor. Si codificamos y comprimimos ese código, la forma de indicar su posición dentro de Pi deberá contener una información similar. Al menos eso es lo lógico, y en base a esa lógica de cero información añadida, o información neutra, deben estar distribuidos al azar los dígitos de Pi y de los innumerables números irracionales con infinitos dígitos.
Publicado por
Salvador Ruiz Fargueta
a las
7:25 p. m.
5
comentarios
Etiquetas: azar puro, número Pi, teoría de la información
2011/04/13
Libertad cuántica
Hola amigos, en un tiempo en que una serie de pueblos, tradicionalmente oprimidos, tratan de despojarse de viejos sistemas autocráticos y despertar a la libertad, las partículas más elementales que forman toda la materia de nuestro universo nos dan una lección de su caracter indomable. La libertad, en cierta forma, está impresa más allá de nuestros genes en la esencia de la propia materia. Paso a reeditaros un antiguo post que habla de la "libertad cuántica". Un abrazo.
Las partículas elementales parecen poseer una cierta "libertad cuántica". Para ellas los sucesos no están estrictamente determinados, como lo fueron para las partículas en la física clásica del siglo XIX, y poseen un elemento de elección dentro de ciertos límites, siempre que en promedio obedecezcan las leyes clásicas. El cuanto de acción, h, les da esa libertad.
Tratemos de confinar un electrón dentro de un núcleo atómico. Después de todo ¿por qué no deben los electrones ser un componente de los núcleos como los protones y los neutrones? Los neutrones experimentan una desintegración radiactiva que los convierte en un protón y un electrón (radiación beta). Por tanto, un electrón atrapado por un protón para formar un neutrón parecería una idea razonable, pero el electrón rehúsa cooperar, se niega a ser confinado.
Un electrón confinado a un espacio de dimensiones nucleares debe tener longitudes de onda asociadas a él tan cortas, al menos, como el diámetro del núcleo. Si las ondas fueran mayores significaría que el electrón consume la mayor parte de su tiempo fuera del núcleo, y eso no funcionaría. Sin embargo, las longitudes de onda cortas implican una restricción en espacio, y ello debe estar equilibrado por un incremento del momento con objeto de conservar su cuanto de acción fundamental, h ( (incremento de espacio) x (incremento de momento) = cuanto de acción (h)) . El electrón tendría tanta energía cinética que saldría de su jaula nuclear. El encarcelamiento no puede realizarse. Los electrones no pueden existir dentro del núcleo en un estado estable, a menos que se ejerza una tremenda fuerza para vencer su empuje hacia la libertad.
Sólo una fuerza tan inmensa como la presión de una estrella que se desintegra bajo su propia gravedad puede apiñar electrones en núcleos para formar un cuerpo compuesto completamente por neutrones: la estrella de neutrones. Y ello es una medida gráfica de lo fuerte que es la urgencia de libertad del electrón. Necesita que un cuerpo del tamaño de una estrella se siente sobre él.
Cada vez que tratamos de restringir la libertad cuántica de un electrón, ya sea forzándolo a entrar en algún espacio o dirigiéndolo a través de hendiduras, éste insiste en su libertad de acción y la manifiesta de una forma característica, y no sólo de forma pasiva. Puede promover su libertad violando las leyes (clásicas) de la conservación de la energía y el momento.
Del estupendo librito " Tiempo, espacio y cosas", de B.K. Ridley, título original "Time, space and things", publicado por Cambridge University Press. Traducción de 1989 del Fondo de Cultura Económica. Pura belleza al servicio de la divulgación científica.
Reciente teoría:
Puede que el comportamiento de las partículas cuánticas no sea tan extraño. Según una reciente teoría que conjuga nuestro conocimiento sobre fractales y agujeros negros, las partículas podrían ser comparadas con una serie de trenes moviéndose sobre una intrincada red fractal de vías. La aparente libertad que observamos en su movimiento se ciñe a ese entramado de vías que desconocemos. No podemos forzar cualquier movimiento arbitrario que permita que el “tren se salga de la vía”.
Ese entramado de vías se correspondería con el llamado conjunto invariante del universo, un mínimo de información subyacente que engloba el número total de estados posibles en el mismo. La supuesta libertad del electrón se ceñiría a seguir ese conjunto mínimo de información que determina, aunque no lo veamos, sus movimientos. (Fuente: Ciencia Kanija)
Publicado por
Salvador Ruiz Fargueta
a las
8:37 a. m.
3
comentarios
Etiquetas: libertad cuántica