2013/06/23

Polvo fractal con dimensión entera


Como comentaba en el post sobre el “Vacío cuántico, vacío fractal ”,  la existencia del cuanto de acción ha destruido por completo la propia noción de trayectoria clásica.

Laurent Nóttale complementó la definición de Richard Feynman (1965) y A. Hibbs sobre las trayectorias virtuales típicas de una partícula cuántica, indicando que los caminos cuánticos posibles son, en número infinitos, y todos son curvas fractales caracterizadas por una propiedad geométrica común: su dimensión fractal es 2.

En algunos foros he leído que no se entendía bien lo de la dimensión fractal entera, en este caso 2, pero tal como indicaba en la expresión general de la dimensión fractal:

Dimensión fractal = dimensión topológica + factor dimensional


( El factor dimensional, siempre positivo, es tanto mayor cuanto más irregular es el fractal: indica la capacidad de ocupar más espacio del que indica su propia dimensión topológica)

Si el factor dimensional es entero, también lo será la dimensión fractal. Eso es lo que ocurre con las trayectorias virtuales en mecánica cuántica y también en una serie de fractales típicos, como puede ser el fractal del movimiento browniano en un plano (dimensión fractal 2)  o la curva de Peano (dimensión fractal 2) que tiene más de 100 años de existencia.


Si una curva clásica tiene dimensión topológica 1, cuando hablamos de curvas fractales con una dimensión  entre 1 y 2 estamos indicando que son capaces de ocupar parte del plano. Y es precisamente esa capacidad la que viene expresada por el factor dimensional.  En el caso de la curva de Peano o del movimiento browniano, en el límite, ocupan todo el plano, de ahí que su dimensión fractal sea 2 , la propia dimensión del plano.



Como ejemplo, todavía más llamativo, observamos en la figura un fractal clásico
 (el primero que se conoce), el polvo de Cantor que toma toma su nombre de Georg  Cantor  que en 1883 lo utilizó como herramienta de investigación para una de sus principales preocupaciones: el continuo.





A partir de una recta se le van quitando los segmentos centrales hasta conseguir una serie infinita de puntos aislados, de ahí el nombre de polvo. Si restablecemos de forma escalonada  el segmento que antes le quitábamos, el nuevo fractal sigue  teniendo estructura quebrada y autosemejante , pero ahora en lugar de tener una dimensión fractal igual a log 2/ log 3 tiene una dimensión entera: log 3/ log 3 =1. Nos ayuda, también,  a entender como se calcula, de forma práctica, la dimensión fractal de una figura.



Esta otra figura es una síntesis de dos de los fractales clásicos, Koch  y  Cantor, y nos ayuda de forma intuitiva a entender el cálculo de su dimensión fractal. En la figura original de Koch, sobre los segmento A1-B1-D1-E1 se construye  la figura que forman los segmentosA-B-C-D-E. Su dimensión fractal es  log 4/ log 3  ( cuatro segmentos sobre tres). En la nueva construcción se ha sustraido 1/4 de cada uno de los segmentos superiores para dejar 4 segmentos de longitud 3/4: al final son 3 sobre 3 (log 3/ log 3 = 1).

Se pueden construir infinidad de fractales con dimensión entera y, precisamente, esa irregularidad que representa una dimensión fractal entera en un fractal creo que nos ayuda a entendelos mejor.

NOTA: Este post se publicó también en la revista Ciencia Abierta de la Universidad de Chile, en el número 31, sección de Educación, artículo nº 14 de dicha sección. Allí se añadió una parte más sobre la llamada dimensión de Hausdorff-Besicovitch:


En 1975 Benoit Mandelbrot publicó un ensayo titulado” Los objetos fractales: forma, azar y dimensión”. En la introducción comentaba los conceptos de objeto fractal y fractal como términos que había inventado a partir del adjetivo latino “fractus” ( roto, fracturado). Posteriormente, en 1982, publicó el libro “The Fractal Geometry of Nature”, en donde proponía : “Un fractal es, por definición, un conjunto cuya dimensión de Hausdorff-Besicovitch es estrictamente mayor que su dimensión topológica.”

De forma simplificada, esa dimensión tan rara se podría entender de la siguiente manera: Una línea recta de longitud N queda recubierta por un número N de segmentos de longitud unidad. Podemos expresarlo diciendo que longitud_línea = N(+1). Un cuadrado con lado N queda recubierto por N2 pequeños cuadrados de lado la unidad. De forma similar a la línea se puede expresar que superficie_cuadrado = (N)(+2). Sabemos que una línea recta tiene dimensión topológica 1 y una superficie dimensión 2. Para
recubrirlos necesitamos un elemento similar pero más pequeño ND veces (en estos ejemplos de magnitud unidad). En general, el exponente D , generalizado a cualquier objeto, representa la dimensión de Hausdorff-Besicovitch del objeto.

Han sido propuestas otras definiciones y, de hecho, estamos ante un concepto geométrico para el que aún no existe un una definición precisa, ni una teoría única y comúnmente aceptada.

Kenneth Falconer, en su obra titulada “Fractal Geometry: Mathematical Foundations and Applications”, en 1990, describe un concepto de estructura fractal ‘F’ como la que satisface alguna(s) de las propiedades siguientes:
(1).- “F” posee detalle a todas las escalas de observación;
(2).- No es posible describir “F” con Geometría Euclidiana, tanto local
como globalmente;
(3).- “F” posee alguna clase de autosemejanza, posiblemente estadística;
(4).- La dimensión fractal de “F” es mayor que su dimensión topológica;
(5).- El algoritmo que sirve para describir “F” es muy simple, y
posiblemente de carácter recursivo.

En resumen, una técnica análoga a la que los biólogos aplican al concepto de vida.

Cuando observamos un fractal, de hecho, apreciamos algo que nos es familiar, más cercano que las perfectas figuras geométricas clásicas que nos han enseñado en el colegio.

Las ramificaciones de los árboles, las roturas imperfectas de una montaña o una costa, la disposición de la máxima superficie en un mínimo espacio de nuestro tejido pulmonar...

Los fractales nos acercan a la compleja "simplicidad" de la Naturaleza.

2013/06/09

La estabilización del vacío cuántico y las dimensiones enrolladas

La dimensión fractaltal como hemos visto en algunas anotaciones de esta bitácora, está formada por dos sumandosla dimensión aparente o topológica más un factor dimensional tanto mayor cuanto más irregular es el fractal. Este factor aditivo en las fluctuaciones del incipiente Universo podría haber sido contrarrestado por las llamadas dimensiones enrolladas, que en cierta forma suponen una resta dimensional, en el momento en que nuestro Universo adoptó la configuración geométrica de tres dimensiones ordinarias y otras seis compactadas. El resultado pudo ser la propia existencia del cuanto de acción como factor de estabilidad de las fluctuaciones, pues su naturaleza las hace depender del inverso de la distancia permitiendo el vacío cuántico estable que conocemos. ResumiendoEs posible que la configuración geométrica adoptada por nuestro Universo (tres dimensiones ordinarias y seis compactadas) haya sido determinante en la propia naturaleza del cuanto de acción y en la estabilidad del vacío cuántico. De esta cuestión trata el siguiente artículo publicado en la revista Ciencia Abierta (ISSN:0717-8948) de la Universidad de Chile, en el volumen 23, de marzo de 2004.


La existencia del cuanto de acción es la causa de que desaparezca el concepto clásico de trayectoria continua y deba ser sustituido por el de "trayectoria" fractal (discontinua, fracturada). El vacío absoluto y continuo de Newton, como marco estable de referencia, es sustituido por un vacío discontinuo y cambiante, merced a la propia estructura de la energía de sus fluctuaciones cuánticas. Nos encontramos, pues, ante un inmenso fractal, el propio vacío cuántico, modelado por sus fluctuaciones de energía de las que queremos extraer una información preciosa, que nos dará pistas sobre el propio Universo y su formación: su dimensión fractal.

El estudio de un fractal sencillo nos ayudará. En concreto, es interesante fijarnos en el que representa al llamado “movimiento browniano”, descubierto por Robert Brown, un botánico escocés que vivió entre finales del siglo XVIII y primera mitad del XIX. Estudió la flora de Australia y Nueva Zelanda y descubrió el llamado “movimiento browniano” de las partículas coloidales, que ha servido de base para el estudio de la cinética de los gases. Este movimiento browniano tiene mucho que ver con nuestro problema, su dimensión fractal es 2 , el típico de una variable puramente aleatoria que, en cierta forma, sobre un plano (dimensión topológica o aparente 2) sería capaz de recubrirlo.

Para variables con dimensión topológica distinta de la unidad es conveniente hablar del cociente D/ δ (dimensión fractal (D)/ dimensión topológica o aparente (δ) ) más que, simplemente, de su dimensión fractal. Reducimos así la dispersión de resultados y encontramos más fácilmente símiles con ejemplos sencillos como trayectorias unidimensionales. Dicho cociente para el fractal que representa al movimiento browniano será:

(1) D/ δ = ( δ + ε ) / δ = ( 1 +1 ) / 1 =2, donde el sumando positivo ε , que se añade a la dimensión topológica, es la dimensión del factor de arrugamiento y nos da una medida de su irregularidad, de su fractura y “arrugamiento”. En este caso ε = 1 .

La variable que representa el producto acotado:
(2) ( ∆ E ) ( ∆ x )< constante ( principio de incertidumbre, en donde ∆ t se ha sustituido por ∆ x / c ), es del mismo tipo que la relativa al movimiento browniano. El valor de este producto acotado es equivalente al paso que dan las partículas coloidales antes de chocar, puede tener cualquier valor aleatorio aunque acotado, por lo que su cociente D/δ es igualmente 2. Intuitivamente, este valor 2 nos indica que se deben dar n2 pasos para poder alejarse de un punto arbitrario tan sólo n pasos efectivos.

En cierta forma, la dimensión fractal nos da una idea de magnitud encubierta, de compactación. Una trayectoria de dimensión fractal 3 es mucho más intrincada, más compacta que otra de dimensión fractal 2. Si hubiéramos seguido la trayectoria con un hilo ideal muy fino, en el primer caso el diámetro del ovillo resultante sería del orden de la raíz cúbica de la longitud total del hilo utilizado, en el segundo del orden de su raíz cuadrada. Observamos que existe una íntima relación entre la magnitud del ovillo, es decir su dependencia con la distancia, y su dimensión fractal. Cualquier fenómeno que modifique su dependencia con la distancia incidirá directamente en su dimensión fractal y viceversa.

Para nuestro caso, la energía de las fluctuaciones del vacío (la magnitud del “ovillo”) depende del inverso de la distancia, lo que supone un cociente D/δ igual a -1, que resulta completamente irregular e induce a pensar en la existencia de un factor desconocido que está influyendo en el cálculo e introduciendo una distorsión considerable.

El factor negativo, que supone una resta de dimensiones, me hizo pensar en las dimensiones enrolladas previstas por la teoría de supercuerdas, la más prometedora teoría que trata de unificar las cuatro interacciones fundamentales: gravedad, electromagnetismo, fuerza débil y fuerte. Dicha teoría necesita de 9 dimensiones espaciales para ser consistente, y ,dado que sólo conocemos 3, se ha especulado con la existencia de otras 6 que, supuestamente, estarían “enrolladas” sobre si mismas ,compactadas alrededor de un radio extremadamente pequeño (del orden de la longitud de Planck,10-35 metros). Así para distancias mucho mayores que ese radio sólo serían perceptibles las 3 dimensiones ordinarias.

En cierta forma, para esas distancias, el número de dimensiones enrolladas se resta al total de las topológicas para dejar tan sólo 3 dimensiones aparentes. Una operación contraria al efecto de la dimensión del factor de arrugamiento, que se suma a la dimensión topológica.
En la expresión (1) si hallamos el cociente D/δ para un Universo con el mismo número de dimensiones enrolladas que la dimensión del factor de arrugamiento (transformación : δ −> δ − ε) , encontramos:

(3) D/δ = (δ ) / (δ - ε). Para ε = 6 , δ =3, el cociente D/δ toma el valor -1 de forma natural y lógica. Sin dimensiones enrolladas el factor ε = 6 supone una dimensión fractal 9 y una dependencia de la energía de las fluctuaciones con la raíz cúbica de la distancia (D/δ = 3) . El efecto de las dimensiones enrolladas la corrige hasta dejarla dependiente del inverso de la distancia, lo que repercute en la forma en que advertimos el vacío cuántico: completamente vacío y estable.
Para un universo con un número de dimensiones enrolladas (coeficiente dimensional negativo) igual a la dimensión del factor de arrugamiento (coeficiente positivo) de la energía de las fluctuaciones , se consigue la estabilización de esta energía que de otra forma dependería de la raíz cúbica de la distancia y no de su inverso. El vacío y toda la materia que contiene estarían deformados y serían inestables .

La especial geometría formada por las dimensiones ordinarias, las enrolladas y el tiempo permite un vacío cuántico estable que de otra forma haría imposible el Universo tal como lo conocemos, pues la turbulencia creada a todos los niveles impediría cualquier tipo de coherencia. Conforme nos acercamos a las distancias del orden de la longitud de Planck, este efecto estabilizador desaparece y se nos presenta un vacío deformado e inestable.

La transparencia del vacío, tal como la advertimos, puede que sea la mejor prueba de la existencia de las 6 dimensiones enrolladas.
También se puede leer un esbozo de la teoría en la revista Elementos de la Universidad de Puebla.

2013/02/10

Números primos, números de una sola pieza / Prime numbers, one-piece numbers


Entre los números naturales 1, 2, 3 ,4 , 5, 6, 7, ,..., , n, existen unos números especiales que sólo son divisibles por la unidad y por ellos mismos. Estos números son llamados números primos y desde que se conocen han producido una extraña fascinación entre los matemáticos. Existen infinitos, Euclides realizó la primera demostración conocida de su infinitud alrededor del 300 a.C., pero su distribución, aparentemente aleatoria, sigue siendo una incógnita.

En cierta forma, estos números podríamos decir que son "de una pieza", y todos los demás números naturales se pueden construir a partir de ellos mediante un proceso llamado factorización. Los primeros números primos menores de cien son: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89 y 97. Cada uno de ellos sólo se puede escribir como: 2 = 2, 3 = 3,..., 29 = 29,..., 67=67, ..., etc. Mientras que el resto de números naturales necesitan expresarse en función de los números primos: 4 = 2x2, 9 = 3x3, 6 = 3x2, 8 = 2x2x2, ...,30 = 2x3x5, etc.


Se conoce una importante expresión llamada teorema de los números primos que nos da la cantidad de números primos que existen hasta un determinado número. Aproximadamente, para números suficientemente grandes, la expresión es:cantidad de números primos = (número)/Logaritmo Neperiano(número). Aplicando la fórmula para (número)=1000, obtenemos 145 primos, cuando en realidad hay 168. Para 5000 nos acercamos un poquito más, la expresión nos da 587 y en realidad existen 669, y conforme probamos números mayores nos acercamos más, aunque las cifras convergen muy lentamente: para 1000 el 86,3%, para 5000 el 87,7% y para 50000 el 90%.

Lagunas con ausencia de números primos:

Entre 1 y 100 existen 25 números primos, como hemos visto, y en la lista observamos grupos de números compuestos, una especie de lagunas con ausencia de números primos: del 24 al 28 y del 90 al 96. Entre el 100 y el 200 hay 23 primos: 101, 103, 107, 109, 113, 127, 131, 137, 139, 149,151, 157, 163, 167, 173, 179, 181, 191,193, 197, 199. Y encontramos lagunas como la del 182 al 190. Nos podemos preguntar si existen lagunas más grandes entre números primos. A simple vista, parece que no vamos a encontrar ninguna de estas lagunas de forma clara con una suficiente cantidad de números, pero no es así. Podemos encontrar tantas como queramos y de la longitud que deseemos, para ello utilizaremos la siguiente expresión (pueden encontrarse muchas más): n!+2 , desde 2 hasta n. Vamos a ver algunos ejemplos: para n=3, 3!=3x2x1=6; 6+2=8 y 6+3=9. Hemos encontrado la primera laguna formada por el 8 y el 9. Seguimos con n=4: 4!=4x3x2x1=24; 24+2=26, 24+3=27 y 24+4=28. Hemos encontrado tres números compuestos seguidos, pero con esta expresión podemos encontrar cuantos queramos, por ejemplo 101 números seguidos (al menos): 102!+2, 102!+3, 102!+3, ..., 102!+101,102!+102.

¿De cuántas piezas están hechos los números?

Volviendo al título del post, se pueden ver los números compuestos como formados por piezas de números primos. Un número compuesto cualquiera, por ejemplo, el 6 es igual al producto de dos números primos 2x3, podemos considerarlo como formado por dos piezas, la pieza 2 y la pieza 3. En cambio los números primos, como el 7, están formados por sólo una pieza. En un símil musical el número primo podría considerarse como armónico principal y único, y el número compuesto como una composición de armónicos primos que formarían su espectro o descomposición factorial.

Analizando la factorización de un número como producto de números primos, podríamos imaginar que cualquier número está formado por tantas piezas como factores primos lo componen. Se observa como curiosidad que los números del orden de 100 estarían formados, como media, por un producto de 2,7 números primos, los del orden de 1000 por un producto de 2,96 números primos, los de 10000 por un producto de 3,16 números, los de 100000 por 3,3, los de 1000000 por 3,42 y los de 10000000 por 3,64. Observamos que la cantidad de "piezas" necesarias para formar cualquier número aumentan muy lentamente, y ese aumento, además, decrece. Es un tanto asombroso que mientras un número de 3 cifras necesita tres primos para factorizarse (está hecho de tres piezas), uno de 10 cifras sólo necesita cuatro (está hecho de cuatro piezas). Claro que al hablar de piezas estas son tan dispares como el 3 y el 2000003, ambos son números primos.

En un extraño (e imaginario) mundo cuántico formado por números enteros, sería fácil descubrir los números primos. Todos los números compuestos se verían como una borrosa superposición de armónicos primos mientras que los números primos aparecerían claros y estables con una sola configuración fácilmente distinguible. Algo de esto debe le debe ocurrir a Daniel Tammet, un joven autista inglés con una sorprendente capacidad para los números. Cuando piensa en ellos ve formas, colores y texturas que le permiten distinguirlos de una manera asombrosa. Al multiplicar dos números ve dos sombras; al instante aparece una tercera sombra que se corresponde con la respuesta a la pregunta. Cuando piensa en algún número sabe reconocerlo como primo o compuesto. Estuve viendo el reportaje sobre su vida, sus facultades como matemático y su prodigiosa memoria. Sus capacidades son asombrosas. En una semana logró aprender, desde cero, suficiente islandés (un idioma catalogado como muy difícil) para mantener perfectamente una entrevista en la televisión de Islandia.

A alguien le podría parecer que el estudio de los números primos no tiene ninguna utilidad, desde luego se equivoca (ojo, el algoritmo de encriptación RSA nos permite las transacciones fiables). Cualquier saber matemático, por muy absurdo que nos parezca está relacionado con infinidad de campos aparentemente inconexos. Cualquier avance en el conocimiento sobre los números primos, por ejemplo, podría ser decisivo para resolver algún problema del campo más increible que se nos ocurra, tanto matemático como físico. La realidad es conexa y conforme la vamos comprendiendo vemos que el conocimiento que tenemos de ella también lo es.


Una novela sobre investigación de números primos:

Sobre los números primos recuerdo haber leído una novela interesantísima titulada "El tío Petros y la conjetura de Goldbach". La trama discurre a través de las vicisitudes de un matemático obsesionado por comprobar la famosa conjetura de Goldbach sobre los números primos, uno de los problemas abiertos más antiguos en matemáticas. Su enunciado es el siguiente: Todo número par mayor que 2 puede escribirse como suma de dos números primos. Confieso que logró atraparme al igual que le ha pasado a infinidad de lectores. Es muy entretenida y recomendable.

... Mi agradecimiento a la página Descartes, del Ministerio de Educación, que me ha facilitado los cálculos de factorización de grandes números que he necesitado.
... Recomiendo visitar esta magnífica página sobre números primos (en inglés).

Nuestro amigo Tito Eliatron nos envía dos interesantísimos enlaces de su blog a una charla del matemático, Medalla Fields, Terry Tao:Primera parte de la charlasegunda parte. Gracias Tito.

2012/12/24

Historia, dignidad y efecto mariposa


Estamos atravesando una grave crisis mundial de la que nadie está seguro cómo saldremos. Se analizan cifras macroeconómicas y se diseñan planes para estabilizar el sistema, pero nada funcionará si no se tiene en cuenta el principal factor que subyace en toda crisis de un sistema: el factor humano, un factor a la vez estabilizante y desestabilizador.

Lo asombroso de la historia
Hay algo asombroso que siempre me ha llamado la atención sobre la historia. Ocurrió antes, ocurre ahora y, posiblemente, pasará siempre : la humanidad no parece saber, ni poder controlar realmente, hacia dónde va. Los acontecimientos se suceden y cuando todo parece amarrado y en su sitio, viene un nuevo incidente que lo desbarata todo, guerras, revoluciones, crisis económicas o cualquier otra catástrofe. Ante estas situaciones la historia, después de ocurridas, saca sus conclusiones y nos ayuda a impedir que vuelvan a repetirse, pero siempre hay algo que se nos escapa y todo vuelve a derivar en alguna nueva catástrofe, todo vuelve a empezar de nuevo.

Efecto mariposa
En física existen unos sistemas que son sumamente sensibles a las condiciones iniciales. Por muy bien que se conozcan las variables que van a influir en su desarrollo, por muy sofisticados que lleguen a ser los instrumentos que las midan, siempre habrá una mínima incertidumbre que influirá, decisívamente, en el desarrollo posterior del sistema. Una mínima causa será capaz de desencadenar grandes consecuencias. Ese efecto es conocido, popularmente, con el nombre de “efecto de la mariposa”. De forma exagerada, pero muy gráfica, se explica que el simple vuelo de una mariposa, en África, puede desencadenar, con el tiempo, un huracán en China. El primero de esos sistemas que se estudió, allá por los años sesenta, fue el tiempo metereológico.

Efecto mariposa e historia
Desde el primer momento, en que tuve conocimiento de este curioso tipo de sistemas físicos, me recordó al propio devenir de la historia. Conocemos miles de pequeñas anécdotas que influyeron, decisivamente, en el posterior desarrollo de acontecimientos sumamente importantes. Cualquiera de esas minúsculas causas, al desarrollarse de modo distinto, habría cambiado el destino de cualquier país o del mundo. La historia ha transcurrido, durante miles de años, cuajada de millones de acontecimientos de mayor o menor significado, entrelazados de forma aleatoria o no. En muchos sentidos, podría ser considerada como un sistema “muy sensible a las condiciones iniciales”, un sistema no lineal y con infinidad de realimentaciones. Afortunadamente, los manipuladores que intentan, e intentarán, cambiar el destino de las naciones, difícilmente, podrán tener en cuenta todas las variables necesarias para conseguir su propósito. A muy corto plazo puede que sus cálculos sean correctos, pero a medio y largo plazo se equivocarán. Los pequeños errores de cálculo, conforme se desarrollan los acontecimientos, van teniendo mayor influencia en los resultados hasta llegar a desfigurarlos. Las actuaciones bienintencionadas se toparán, en principio, con los mismos inconvenientes ante el efecto multiplicador de los pequeños errores de cálculo sobre el sistema. Más ahora, que el efecto de la globalización trasforma al mundo en un sistema más sensible e inestable.

¿ Dignidad y estabilidad?
Aparte del factor puramente “físico”, de la incertidumbre, hay un elemento capital, en el desarrollo histórico, que el manipulador tiende a olvidar y que se alía con el “efecto de la mariposa” para desbaratar sus planes. Puede parecer poco científico, incluso irreal, pero, lejos de eso, obedece a una realidad constatable y sólida, y es un elemento esencial del factor humano: la dignidad humana. No actúa como motor de la historia sino más bien como “encauzador” del verdadero motor. Éste, por cierto, no es ajeno al egoísmo en sus más diversas formas, perversas en mayor o menor medida.


El poder egoísta tiende a pisarlo todo, sin ningún tipo de consideración. Es un elemento motriz burdo, como una tormenta. Pero a diferencia de la tormenta que actúa sin cortapisas, obedeciendo a leyes físicas y a condicionamientos puramente mecánicos, el poder siempre tiene enfrente a la dignidad de la persona. La pisará una y mil veces, la despreciará, pero al final la encontrará cara a cara, haciéndole frente, en el germen de toda revolución o cambio necesario. Y será capaz de reconducir la propia corriente de la historia. Esa es la diferencia entre los sistemas físicos, caóticos en el sentido en que pueden seguir muy distintas trayectorias de futuro, igualmente válidas, y el “sistema sensible” de la historia cuya única trayectoria final estable, después de cualquier cambio caótico, pasa por el respeto a la dignidad humana. El sentimiento que hace sentirnos únicos, diferentes, con un valor intrínseco, como centro que somos del mundo que percibimos, de nuestro mundo. Es un sentimiento universal y nace de la propia conciencia de ser.

Todos los amantes de la física y de la justicia podemos congratularnos de que un efecto físico “amigo” sea aliado de la justicia social contra los cálculos egoístas del poder. Esos cálculos, organizados por el más potente de los ordenadores que pueda existir en el futuro, son incapaces de recoger toda la información, potencialmente necesaria e influyente, en sus más pequeños detalles. Un simple vuelo, no previsto, no calculado, de una insignificante mariposa podrá desbaratar los planes más perfectos y meditados. Ese simple vuelo será también capaz de desbaratar los planes bienintencionados que traten de controlar cualquier crisis si no cuentan con el factor de estabilización que introduce, en infinidad de puntos inestables, el respeto a la dignidad personal.

Post sacado de mi colaboración con Libro de notas, Ciencias y letras.

¡¡¡FELIZ AÑO AMIGOS!!!

2012/07/16

El mecanismo de Higgs: la creación de la masa en el Universo.


“Los dioses crearon al mundo con alguna imperfección simétrica. Esto, con el objetivo de que los humanos no sintieran envidia de sus poderes”. Richard Feynmann (Premio Nobel de Física)


Conforme nos acercamos a comprender el mismo instante del Big Bang, crece nuestra excitación, nos da la sensación de que casi parece que tocamos el momento de la creación. Ese sentimiento es el que debe haber experimentado la persona que bautizó a la partícula llamada bosón de Higgs como partícula Dios, por ser la partícula cuántica asociada a un campo escalar llamado de Higgs, capaz de conferir masa al resto de las partículas y a la propia (podría haber recibido también el nombre de otros colegas como Brout, Engler o Kibble, como reconoce el propio Peter Ware Higgs).

En un estado inicial unificado y simétrico (las cuatro fuerzas constituían una sola fuerza unificada y simétrica) existirían unos campos asociados con partículas de interacción sin masa. La idea fundamental del mecanismo de Higgs consiste en introducir un nuevo campo escalar que ofrece la propiedad de no anularse en el vacío, pues anularlo costaría energía. El estado inicial simétrico sería similar a lo que ocurre en la figura, la base de una botella de vino. Si situamos en el punto superior de la base una bolita, nos encontraremos con una situación perfectamente simétrica pero inestable (campos sin masa). De forma espontánea, esta simetría tenderá a romperse en dirección de una situación final no simétrica pero con menor energía potencial, la bolita descansará en la parte más baja de la base (campos con partículas asociadas con masa).

Una simetría puede ser perfecta en el plano de las ecuaciones y resultar rota en el plano de las soluciones. Como decía Weinberg: «Aunque una teoría postule un alto grado de simetría, no es necesario que los estados de las partículas muestren la simetría. Nada me parece tan halagüeño en física como la idea de que una teoría puede tener un alto grado de simetría que se nos oculta en la vida ordinaria».


La teoría que unifica las interacciones electromagnéticas y débil se debe a Glashow, Salam y Weinberg que obtuvieron por ella el Premio Nobel de física de 1979. La dificultad esencial de esta teoría es que los bosones del estado inicial simétrico debían ser de masa nula (masa nula de los bosones de interacción origina una fuerza a gran distancia), mientras que se necesitan bosones intermedios (partículas que originan la fuerza) muy masivos para justificar la interacción débil (corto alcance) . El mecanismo de Higgs, permite resolver esa dificultad, mediante la ruptura espontánea de simetría hace masivos los bosones W y Z (interacción débil) y mantiene nula la masa del fotón (interacción electromagnética).

En la física de estado sólido encontramos algunos mecanismos similares. Cuando un metal se encuentra sometido a un campo magnético, y se le enfría hasta convertirlo en superconductor, las líneas del campo son expulsadas brutalmente del superconductor, por la formación de un campo escalar formado por pares de electrones (dos fermiones de espín ½ , o pares de Cooper) que constituyen bosones de espin 0. El campo magnético penetra en el semiconductor en una capa muy fina. El espesor de ésta corresponde a un alcance efectivo del campo magnético que se comporta así como un campo masivo. En las interacciones débiles, el vacío representa el papel del semiconductor, el campo de Higgs, el papel del campo de los pares de Cooper, y el campo de interacción débil, el campo magnético.



Recientemente, científicos del LHC (Large Hadron Collider) han anunciado el descubrimiento de una partícula que tiene todos los visos de ser el boson de Higgs. Si es así significará un antes y un después en el conocimiento más íntimo de la materia. En la figura se observa el electroimán superconductor más grande que existe, el ATLAS. Forma parte del LHC, en el laboratorio internacional de física de alta energía CERN en Ginebra.




Reedición de un antiguo post sobre el tema. Felices vacaciones, amigos.

2012/05/31

Fractales, una geometría natural


La geometría tan intuitiva que nos enseñan en la escuela, basada en líneas, puntos y superficies supone, en realidad, un gran esfuerzo de abstracción porque estos elementos idealizados no existen en el mundo cotidiano. Una línea real o una superficie están llenas de irregularidades que pasamos por alto para abstraer su esencia y plasmarla en conceptos más sencillos como recta y plano.


Con los fractales, en cierta manera, deshacemos esa abstracción y nos acercamos un poco más al objeto real. Benoït Mandelbrot utiliza el ejemplo sencillo de un objeto real, como son las costas de los países, para aproximarnos a los fractales. Son líneas quebradas que siguen teniendo un aspecto parecido cuando cambiamos de escala. Precisamente estas dos propiedades son las que definen a un fractal: discontinuidad (rotura, fractura, de ahí su nombre) y autosemejanza con el cambio de escala. Medimos su grado de fractura e irregularidad con un simple número que llamamos dimensión fractal.

Repasando intuitivamente el concepto de dimensión, observamos que un punto no tiene medida (dimensión cero); a una recta la medimos en metros o centímetros lineales, lo que significa asignarle dimensión uno (una sola medida: largo); a una superficie la debemos medir en metros o centímetros cuadrados (dimensión dos: largo por ancho) y a un volumen lo medimos en metros o centímetros cúbicos (dimensión tres: largo por ancho por alto). Un fractal, generalmente, tendrá una dimensión (su dimensión fractal) que estará entre cero y uno, entre uno y dos o entre dos y tres.
Supongamos el caso más sencillo, una recta fractal representada por un hilo arrugado, e imaginemos que tiene dimensión fractal 1,25. Si otro hilo tiene dimensión fractal 1,35, la simple comparación de sus dimensiones fractales supone que este segundo hilo está más arrugado que el primero, presenta más irregularidades. La parte entera de la dimensión fractal (en este caso 1) nos está informando que el objeto con el que tratamos es una recta, la parte fraccionaria nos mide su grado de irregularidad.

La dimensión fractal también da la capacidad que tiene el objeto de ocupar el espacio. El hilo con dimensión fractal 1,35 es capaz de llenar el plano mejor que el de dimensión 1,25. De hecho, si seguimos arrugándolo más aumentaremos su dimensión fractal y cuando esté cercana a 2 habremos conseguido llenar, casi por completo, una superficie con el hilo. Un fractal clásico de este tipo es la llamada curva de Peano.


Los fractales son objetos esencialmente sencillos, se generan fácilmente por ordenador. Mediante muy pocas órdenes de programación, y a partir de un número mínimo de datos, se crean verdaderas maravillas de una riqueza y complejidad extraordinarias. El fractal de Mandelbrot es un ejemplo. Conforme intentamos ampliar, con medios informáticos, cualquiera de sus partes nos encontramos con un nuevo paisaje similar al original pero con nuevos y sorprendentes detalles. Podemos seguir así cuanto deseemos y nos permita la potencia de nuestro ordenador, se nos seguirá mostrando un nuevo mundo fantástico, que nunca llega a repetirse, en cada nueva ampliación. Un mundo surgido casi de la nada, de una sencilla expresión que se encadena y realimenta con nuevos datos.

Como curiosidad, la expresión es así de sencilla: Valor posterior = (valor anterior) 2 + constante (Con una condición restrictiva).

La observación de estos fractales creados por ordenador, nos recuerda siempre a algún objeto natural desconocido pero cercano, posiblemente, porque esa economía de medios para lograr complejidad es una característica muy propia de la Naturaleza. Es la estrategia adoptada para lograr la mejor distribución de los vasos sanguíneos por todo el cuerpo, la disposición óptima del ramaje de los árboles o de los pliegues del cerebro para conseguir la mayor superficie en el mínimo espacio.

Verdaderas maravillas de arte fractal.

(*) De mi colaboración con Libro de Notas, la columna mensual cienciasyletras.

2012/05/09

Fractales contra dimensiones enrolladas, una "oposición" geométrica



Arrugar, romper o fracturar la continuidad clásica para aumentar la capacidad de un objeto de ocupar espacio, o enrollarlo para disminuir dicha capacidad. He aquí la cuestión, aparentemente trivial, que puede llevarnos a entender mejor el propio nacimiento de nuestro Universo.


Geometría fractal. La geometría sobre puntos, rectas, planos y demás objetos geométricos que se nos enseña en la escuela no es más que una abstracción, muy útil, sobre objetos reales de nuestra vida cotidiana. Cualquier superficie de la vida real, por muy perfecta que nos parezca nunca es un plano geométrico perfecto. Conforme la observemos con más y más aumento repararemos en un montón de imperfecciones que la van alejando de la geometría euclidea que nos han enseñado y la acercan, cada vez más, a una nueva geometría más cercana a la realidad que llamamos geometría fractal.


Imaginemos que en un espacio de tres dimensiones nos encontramos con una especie de diablillo virtual moviéndose con total libertad y tratando de recubrirlo por completo. Su trayectoria será una línea quebrada, con infinidad de recovecos, cuyo fin será pasar por todos los puntos del espacio. Como línea de trayectoria que es su dimensión topológica será la unidad, pero su capacidad de recubrir el espacio nos indica que estamos ante un objeto geométrico diferente a los típicos objetos euclidianos que hemos estudiado en la escuela, como el punto, la línea o el plano de dimensiones cero, uno o dos. Este tipo de objetos es lo que Benoît Mandelbrot llamaba en 1975 objetos fractales, concepto que había inventado a partir del adjetivo latino “fractus” (roto, fracturado). Posteriormente, en 1982, publicó el libro “The Fractal Geometry of Nature”, en donde proponía : “Un fractal es, por definición, un conjunto cuya dimensión de Hausdorff-Besicovitch es estrictamente mayor que su dimensión topológica.”


Dimensión fractal. La dimensión que define la trayectoria del diablillo ya no es la dimensión clásica de una línea (la unidad), sino que a ella debemos añadir un coeficiente dimensional que nos indica su grado de irregularidad.La suma de los dos coeficientes nos da un nuevo valor dimensional al que llamamos dimensión fractal. En este caso hacemos la siguiente suma: dimensión geométrica clásica (1) + coeficiente dimensional (2) = dimensión fractal (3).


Dependencia con la distancia. Hay un detalle más que nos da una idea del movimiento que lleva el diablillo. La distancia total que recorre al cabo de N de sus pasos debe ser sólo la raíz cúbica de su alejamiento efectivo a un punto arbitrario, es decir para alejarse una distancia efectiva d, de un punto cualquiera, su recorrido total deberá ser d 3. Este exponente (3) nos está dando, también, la dimensión fractal del movimiento. En cierta forma es lógico que sea así, pues el volumen que intersecta y recubre la trayectoria es del orden del cubo de su distancia característica (Volumen = Lado3).


¿Que tiene que ver todo esto con las dimensiones enrolladas? Supongamos una manguera vista desde una distancia de doscientos metros. A todos los efectos prácticos sólo vemos una línea y una sola dimensión característica, su longitud. Un objeto tridimensional, aunque con dos dimensiones significativas en el orden práctico se ha convertido en una linea unidimensional. Mejor aún, para poder visualizar más fácilmente la "oposición" geométrica a la que se refiere el título del post, imaginemos una lámina superfina (despreciamos su espesor) de un material moldeable. Cuando la lámina está perfectamente extendida, y sin arrugas, tenemos un objeto geométrico con dos dimensiones. Si la arrugamos y comprimimos convenientemente hasta conseguir una bola tendremos un objeto con tres dimensiones significativas, por lo que habremos aumentado en una su dimensión inicial. Si, por el contrario, la enrollamos perfectamente hasta formar un tubo muy fino obtendremos un objeto unidimensional, una línea, y habremos disminuido en una su dimensión inicial. En cierta forma vemos que realizamos operaciones opuestas, geométricamente hablando. Una suma dimensiones (fractalizar) y la otra resta (enrollar).


¿Tiene algún sentido práctico todo esto? Puede tenerlo, y mucho. Siempre de forma hipotética, de forma casual me di cuenta de que en un universo emergente esta simple cuestión geométrica pudo tener mucho que ver en la estabilidad que presenta el vacío cuántico. Para un vacío cuántico cuyas fluctuaciones de energía fueran un fractal de dimensión (3 + 6), unas supuestas dimensiones enrolladas que nos dejaran un espacio de (9 - 6) dimensiones (6 enrolladas) contribuirián decisivamente a su estabilidad. En el momento clave en que debían quedar definidas las constantes típicas de este universo (la propia naturaleza del cuanto), las supuestas dimensiones enrolladas pudieron tener un papel primordial, puramente geométrico, en su definitiva fijación. (Ver en la Revista Elementos de la Universidad autónoma de Puebla, un esbozo de esta teoría)

Reedición de un interesante post de 2009. Espero que os guste amigos. Un abrazo.