2010/02/12

Partículas, campos, teoría clásica y cuántica

La teoría cuántica no era algo que desearan los teóricos. La mayoría de ellos se encontraron conducidos, a su pesar, a esta extraña visión del mundo porque la teoría clásica, pese a su soberbia grandeza, tiene algunas dificultades profundas.



La principal causa es el hecho de que deben coexistir dos tipos de objetos físicos: las partículas, cada una de ellas descrita mediante un número finito de parámetros, tres posiciones y tres momentos; y los campos que requieren un número infinito de parámetros. Esta dicotomía no es físicamente consistente. Para que un sistema con partículas y campos estén en equilibrio toda la energía de las partículas debe cederse a los campos. Ésta es una consecuencia del fenómeno llamado "equipartición de la energía": en el equilibrio la energía se reparte por igual entre todos los grados de libertad del sistema. Puesto que los campos tienen infinitos grados de libertad a las partículas no les puede quedar nada en absoluto.

Los átomos clásicos no serían estables pues todo el movimiento de las partículas se transferirían a los modos ondulatorios de los campos. Cuando un electrón orbital se mueve alededor del núcleo debería emitir ondas electromagnéticas de una intensidad creciente hasta infinito en una pequeña fracción de segundo. Al mismo tiempo describiría una espiral que se cerraría y hundiría en el núcleo. Sin embargo no se observa nada de eso. Lo que se observa es bastante inexplicable sobre la base de la teoría clásica. Los átomos pueden emitir ondas electromagnéticas (luz) pero sólo en destellos de frecuencias discretas específicas: las agudas líneas espectrales observadas y características de cada tipo de elemento. Además, estas frecuencias satisfacen reglas que no tienen nada que ver con la teoría clásica.

Otra manifestación de la inestabilidad de la coexistencia de campos y partículas es el fenómeno conocido como “radiación del cuerpo negro”. En 1900 Rayleigh y Jeans habían calculado que toda la energía sería absorbida por el campo, sin límite, en lo que se ha llamado “catástrofe ultravioleta”. La energía seguiría fluyendo sin cesar hacia el campo con frecuencias cada vez mayores.


Max Planck, en ese mismo año, propuso una idea revolucionaria para eliminar los modos de alta frecuencia del “cuerpo negro”: que las oscilaciones electromagnéticas sólo ocurren en “cuantos” cuya energía E mantiene una relación definida con la frecuencia f, dada por: E= h f, siendo h una nueva constante fundamental de la Naturaleza, ahora conocida como constante de Planck. Con este ingrediente extravagante, Planck pudo obtener un sorprendente acuerdo teórico con la dependencia experimentalmente observada de la intensidad con la frecuencia, la ahora llamada ley de radiación de Planck.

Al final las radiaciones electromagnéticas sólo se podían presentar en paquetes discretos llamados fotones. La luz, después de todo, tal como había insistido Newton dos siglos antes debía estar formada de "partículas", a pesar de que a principios del siglo XIX Thomas Young demostró que consistía en ondas. ¿Ondas o partículas?. En 1923 el físico francés Louis de Broglie propuso que las propias partículas de materia se comportaban a veces como ondas. La frecuencia de la onda de Broglie f, de una partícula de masa m, satisface la relación de Planck, combinada con la relación masa/energía de Einstein.



La dicotomía entre partículas/ondas u oscilaciones del campo, que había sido una característica de la teoría clásica, no se respeta en la Naturaleza. La Naturaleza consigue construir un mundo consistente en el que las partículas y las oscilaciones del campo son la misma cosa.






Para saber más:
- "La nueva mente del emperador". Roger Penrose.
-"La luz, algo sobre su historia". LBT.
- "La física cuántica es fácil". LBT.

2010/01/25

Las matemáticas y la física

“El libro del Universo está escrito en lengua matemática y sus caracteres son triángulos, círculos y otras figuras geométricas sin cuya mediación es humanamente imposible comprender ni una palabra” (Galileo Galilei).


La existencia de una relación particular entre la física y las matemáticas goza de un reconocimiento universal. A través de la historia de la física abundan los testimonios explícitos en ese sentido, empezando por la célebre afirmación de Galileo: "La filosofía está escrita en ese inmenso libro siempre abierto ante nuestros ojos (el Universo), pero no se la puede comprender si no se aprende primeramente a conocer la lengua y los caracteres en que está escrito. Está escrito en lengua matemática y sus caracteres son triángulos, círculos y otras figuras geométricas sin cuya mediación es humanamente imposible comprender ni una palabra.”

Tres siglos después, el astrofísico Jeans escribió: “El Gran Arquitecto parece ser matemático.” Podría recopilarse una verdadera antología de citas de este estilo. Y cualquier capítulo de la física parece bueno como ejemplo para tales afirmaciones.

La física utiliza con éxito las matemáticas. No obstante este enunciado, lejos de ser como aparenta una estricta constatación, está cargado de presupuestos, aunque resuma una visión inmediata de la situación. Pero lleva directamente a preguntarse por las causas de ese éxito. ¿Cómo puede ser que las matemáticas, reputadas en general como estudio de abstracciones puras, “funcionen” en física, considerada como la ciencia de lo concreto por excelencia? Los propios físicos dan fe a menudo, con una sorpresa ingenua o en términos de una confesión incómoda, de que esta adecuación plantea un problema: “Sin embargo, es notable que ninguna de las construcciones abstractas que la matemática realiza, teniendo exclusivamente como guía su necesidad de perfección lógica y de generalidad creciente, parezca que haya de permanecer sin utilidad para el físico. Por una singular armonía, las necesidades del pensamiento, preocupado por construir una representación adecuada de la realidad, parecen haber sido previstas y anticipadas por el análisis lógico y la estética abstracta del matemático” (P. Langevin). “La idea de que las matemáticas podían adaptarse, de algún modo, a los objetos de nuestra experiencia me parecía extraordinaria y apasionante” (W. Heisenberg).


Las matemáticas constituyen el lenguaje de la física. Al texto citado de Galileo se le pueden añadir dos citas: “Todas las leyes se extraen de la experiencia, pero para enunciarlas se precisa de una lengua especial; el lenguaje ordinario es demasiado pobre, y es además demasiado vago, para expresar relaciones tan delicadas, tan ricas y tan precisas. Esta es la razón por la que el físico no puede prescindir de las matemáticas; éstas le proporcionan la única lengua en la que puede hablar” (H. Poincaré). “Las matemáticas constituyen, por decirlo así, el lenguaje por medio del cual puede plantearse y resolverse una pregunta” (W. Heisenberg).

Esta concepción de las matemáticas como lenguaje de la física puede, no obstante, interpretarse de varias maneras, según que dicho lenguaje se piense como el de la naturaleza, y que el individuo que la estudia deberá esforzarse por asimilar; o bien que se le conciba a la inversa, como el lenguaje del individuo, al cual habrán de traducirse los hechos de la naturaleza para que resulten comprensibles. La primera posición parece ser la de Galileo, también es la de Einstein: “ De acuerdo con nuestra experiencia hasta el momento, tenemos derecho a estar convencidos de que la naturaleza es la realización del ideal de la simplicidad matemática. La construcción puramente matemática nos permite encontrar esos conceptos, y los principios que los relacionan, que nos dan la clave para comprender los fenómenos naturales.” El segundo punto de vista es el de Heisenberg: “ Las fórmulas matemáticas ya no representan la naturaleza, sino el conocimiento que de ella poseemos”. Sin embargo, ambas actitudes, lejos de oponerse, no son sino los puntos extremos de un espectro continuo, y de lo que se trata es de encontrar un punto de equilibrio en el interior de una estructura que se apoya sobre los pares de nociones opuestas naturaleza-hombre, experiencia-teoría, concreto-abstracto, hechos científicos-leyes científicas.


Para el gran físico-matemático Roger Penrose, en cierta forma, la mente parece tener “acceso” al mundo de las ideas al que se refería Platón. Repasando alguna de las afirmaciones que hace en su libro “ La nueva mente del emperador”: Hasta qué punto son "reales" los objetos del mundo del matemático?. Desde un cierto punto de vista parece que no puede haber nada real en ellos. Los objetos matemáticos son sólo conceptos; son idealizaciones mentales que hacen los matemáticos, a menudo estimulados por el orden aparente de ciertos aspectos del mundo que nos rodea, pero idealizaciones mentales en cualquier caso. ¿Pueden ser algo más que meras construcciones arbitrarias de la mente humana? Al mismo tiempo parece que existe alguna realidad profunda en estos conceptos matemáticos que va más allá de las elucubraciones mentales de un matemático particular. En lugar de ello, es como si el pensamiento matemático estuviese siendo guiado hacia alguna verdad exterior —una verdad que tiene realidad por sí misma y que sólo se nos revela parcialmente a alguno de nosotros.


Para saber más: “Pensar la matemática”, de la serie Metatemas dirigida. Por Jorge Wagensberg de Tusquets Editores. Son artículos de varios autores. El post hace referencia al artículo de J.M Lévy-Leblond, profesor de la Universidad de Niza y gran divulgador de las matemáticas.
Sobre Penrose y el platonismo matemático: Ver enlace.


Parece que fue ayer, pero hoy hace un año que falleció mi padre. D.E.P.

2009/12/31

Historia, dignidad y efecto mariposa

Estamos atravesando una grave crisis mundial de la que nadie está seguro cómo saldremos. Se analizan cifras macroeconómicas y se diseñan planes para estabilizar el sistema, pero nada funcionará si no se tiene en cuenta el principal factor que subyace en toda crisis de un sistema: el factor humano, un factor a la vez estabilizante y desestabilizador.

Lo asombroso de la historia
Hay algo asombroso que siempre me ha llamado la atención sobre la historia. Ocurrió antes, ocurre ahora y, posiblemente, pasará siempre : la humanidad no parece saber, ni poder controlar realmente, hacia dónde va. Los acontecimientos se suceden y cuando todo parece amarrado y en su sitio, viene un nuevo incidente que lo desbarata todo, guerras, revoluciones, crisis económicas o cualquier otra catástrofe. Ante estas situaciones la historia, después de ocurridas, saca sus conclusiones y nos ayuda a impedir que vuelvan a repetirse, pero siempre hay algo que se nos escapa y todo vuelve a derivar en alguna nueva catástrofe, todo vuelve a empezar de nuevo.

Efecto mariposa
En física existen unos sistemas que son sumamente sensibles a las condiciones iniciales. Por muy bien que se conozcan las variables que van a influir en su desarrollo, por muy sofisticados que lleguen a ser los instrumentos que las midan, siempre habrá una mínima incertidumbre que influirá, decisívamente, en el desarrollo posterior del sistema. Una mínima causa será capaz de desencadenar grandes consecuencias. Ese efecto es conocido, popularmente, con el nombre de “efecto de la mariposa”. De forma exagerada, pero muy gráfica, se explica que el simple vuelo de una mariposa, en África, puede desencadenar, con el tiempo, un huracán en China. El primero de esos sistemas que se estudió, allá por los años sesenta, fue el tiempo metereológico.

Efecto mariposa e historia
Desde el primer momento, en que tuve conocimiento de este curioso tipo de sistemas físicos, me recordó al propio devenir de la historia. Conocemos miles de pequeñas anécdotas que influyeron, decisivamente, en el posterior desarrollo de acontecimientos sumamente importantes. Cualquiera de esas minúsculas causas, al desarrollarse de modo distinto, habría cambiado el destino de cualquier país o del mundo. La historia ha transcurrido, durante miles de años, cuajada de millones de acontecimientos de mayor o menor significado, entrelazados de forma aleatoria o no. En muchos sentidos, podría ser considerada como un sistema “muy sensible a las condiciones iniciales”, un sistema no lineal y con infinidad de realimentaciones. Afortunadamente, los manipuladores que intentan, e intentarán, cambiar el destino de las naciones, difícilmente, podrán tener en cuenta todas las variables necesarias para conseguir su propósito. A muy corto plazo puede que sus cálculos sean correctos, pero a medio y largo plazo se equivocarán. Los pequeños errores de cálculo, conforme se desarrollan los acontecimientos, van teniendo mayor influencia en los resultados hasta llegar a desfigurarlos. Las actuaciones bienintencionadas se toparán, en principio, con los mismos inconvenientes ante el efecto multiplicador de los pequeños errores de cálculo sobre el sistema. Más ahora, que el efecto de la globalización trasforma al mundo en un sistema más sensible e inestable.

¿ Dignidad y estabilidad?
Aparte del factor puramente “físico”, de la incertidumbre, hay un elemento capital, en el desarrollo histórico, que el manipulador tiende a olvidar y que se alía con el “efecto de la mariposa” para desbaratar sus planes. Puede parecer poco científico, incluso irreal, pero, lejos de eso, obedece a una realidad constatable y sólida, y es un elemento esencial del factor humano: la dignidad humana. No actúa como motor de la historia sino más bien como “encauzador” del verdadero motor. Éste, por cierto, no es ajeno al egoísmo en sus más diversas formas, perversas en mayor o menor medida.


El poder egoísta tiende a pisarlo todo, sin ningún tipo de consideración. Es un elemento motriz burdo, como una tormenta. Pero a diferencia de la tormenta que actúa sin cortapisas, obedeciendo a leyes físicas y a condicionamientos puramente mecánicos, el poder siempre tiene enfrente a la dignidad de la persona. La pisará una y mil veces, la despreciará, pero al final la encontrará cara a cara, haciéndole frente, en el germen de toda revolución o cambio necesario. Y será capaz de reconducir la propia corriente de la historia. Esa es la diferencia entre los sistemas físicos, caóticos en el sentido en que pueden seguir muy distintas trayectorias de futuro, igualmente válidas, y el “sistema sensible” de la historia cuya única trayectoria final estable, después de cualquier cambio caótico, pasa por el respeto a la dignidad humana. El sentimiento que hace sentirnos únicos, diferentes, con un valor intrínseco, como centro que somos del mundo que percibimos, de nuestro mundo. Es un sentimiento universal y nace de la propia conciencia de ser.

Todos los amantes de la física y de la justicia podemos congratularnos de que un efecto físico “amigo” sea aliado de la justicia social contra los cálculos egoístas del poder. Esos cálculos, organizados por el más potente de los ordenadores que pueda existir en el futuro, son incapaces de recoger toda la información, potencialmente necesaria e influyente, en sus más pequeños detalles. Un simple vuelo, no previsto, no calculado, de una insignificante mariposa podrá desbaratar los planes más perfectos y meditados. Ese simple vuelo será también capaz de desbaratar los planes bienintencionados que traten de controlar cualquier crisis si no cuentan con el factor de estabilización que introduce, en infinidad de puntos inestables, el respeto a la dignidad personal.

Post sacado de mi colaboración con Libro de notas, Ciencias y letras.

¡¡¡FELIZ AÑO AMIGOS!!!

2009/12/17

El infinito y más allá, los números transfinitos Aleph

A finales del siglo XIX el original matemático Georg Cantor propuso una bella teoría sobre los números finitos o transfinitos, según la cual el número total de fracciones, números enteros y números naturales son el mismo número transfinito al que llamó Aleph sub-cero.

A primera vista no parece algo razonable, pues se podría pensar que el número de enteros es mayor que el número de naturales, ya que todo número natural es un entero mientras que algunos enteros (los negativos) no son números naturales. De forma similar se podría pensar, también, que el número de fracciones es mayor que el de enteros, pero una cosa es lo que parece y otra lo que es.


La clave está en las extrañas propiedades de los números infinitos y las relaciones que se pueden establecer entre ellos. Para objetos finitos de dos conjuntos diferentes si podemos establecer una "correspondencia uno-a-uno", entre ambos, se puede deducir que tienen el mismo número de elementos. Para un número finito de números naturales ocurre lo mismo, pero lo que es evidente para números finitos deja de serlo para infinitos.

Se puede establecer una correspondencia uno-a-uno entre los números naturales y los números enteros de la siguiente forma: 0(entero)--> 0(natural); -1(entero)--> 1(natural); +1 (entero)--> 2 (natural) y así seguimos indefinidamente con la siguiente tabla:



Cada entero y cada número natural aparecen una y sólo una vez en la tabla. Esta correspondencia entre cada par de números entero-natural es lo que establece en la teoría de Cantor que el número de elementos de la columna de enteros es igual al número de elementos en la columna de naturales. Por consiguiente, el número de enteros es el mismo que el de naturales. De forma similar, aunque algo más complicada, se puede probar que el conjunto de fracciones (racionales) tiene el mismo número de elementos que el conjunto de enteros. El número es infinito, pero no importa, es el mismo número.

El gran matemático David Hilbert se inventó la metáfora del Hotel Infinito para explicar de forma intuitiva las paradojas a las que nos enfrenta la existencia de infinidad de infinitos:

"Había un hotel que tenía infinitas habitaciones. Un día llega un nuevo huésped para alojarse allí, pero el conserje le dice que tenía mala suerte, que estaban todas llenas. El huésped, indignado llama al gerente, y le pregunta cómo era posible en un hotel con infinitas habitaciones. El gerente le da la razón, pero dice que no puede hacer nada, entonces el huésped responde rápidamente: ‘ya se lo que se puede hacer; al que esté en la habitación 1 lo manda a la habitación 2, al de la habitación 2 a la 3 y así sucesivamente, entonces la habitación 1 quedará libre para mi. El gerente
encontró maravillosa esta solución y así lo hizo".


"Algunos días después llega otro huésped y pide de alojarse, a lo que le responden que el hotel estaba lleno, pero que no se preocupara, que sabían cómo solucionarlo. Entonces este huésped dice que había un problema, que él no estaba solo, sino con un grupo de amigos… y que era un grupo infinito. El gerente, otra vez consternado no sabía qué hacer, pero el huésped, también muy hábil le dice que no se preocupe, que mande al de la habitación 1 a la 2, al de la 2 a la 4, al de la 3 a la 6 y así sucesivamente. De esa forma todas las habitaciones con números impares quedarían libres para sus infinitos amigos."

Los conjuntos que pueden ser puestos en correspondencia uno-a-uno con los números naturales se llaman numerables, de modo que los conjuntos infinitos numerables tienen aleph sub-cero elementos.

¡Sorprendentemente, aunque se amplíe el sistema desde los números naturales a los enteros y a los racionales, no incrementamos realmente el número de objetos con los que trabajamos!.

Después todo esto podríamos pensar que todos los conjuntos infinitos son numerables, pero no es así, no sólo hay un tipo de infinito, pues la situación es muy diferente al pasar a los números reales. Cantor demostró mediante el argumento del "corte diagonal" que realmente hay más números reales que racionales. El número de reales es el número transfinito C, de continuo, otro nombre que recibe el sistema de los números reales.

Podríamos pensar en darle a ese número el nombre de aleph sub-uno, por ejemplo. Pero ese nombre representa el siguiente número transfinito mayor que aleph sub-cero y el decidir si efectivamente C = Aleph sub-uno constituye un famoso problema no resuelto, la llamada hipótesis del continuo.

Como curiosidad, ya que estamos hablando de infinitos, el término gugol (en inglés googol) es un número enorme 10100 fue acuñado en 1938 por Milton Sirotta, un niño de 9 años, sobrino del matemático estadounidense Edward Kasner. Kasner anunció el concepto en su libro Las matemáticas y la imaginación. Isaac Asimov dijo en una ocasión al respecto: "Tendremos que padecer eternamente un número inventado por un bebé".

El gúgol no es de particular importancia en las matemáticas y tampoco tiene usos prácticos. Kastner lo creó para ilustrar la diferencia entre un número inimaginablemente grande y el infinito, y a veces es usado de esta manera en la enseñanza de las matemáticas. El motor de búsqueda de google fue llamado así debido a este número. Los fundadores originales iban a llamarlo Googol, pero terminaron con Google debido a un error de ortografía de Larry Page, uno de los fundadores de Google.

2009/12/01

El espín y los extraños giros de los fermiones


De todas las cantidades físicas la conocida como espín se suele considerar como la más "mecano-cuántica". La palabra espín viene del inglés "spin", que significa giro o girar, y se refiere a una propiedad física de las partículas (1) subatómicas, por la cual toda partícula elemental tiene un momento angular intrínseco de valor fijo. Es una característica propia de la partícula como lo es la masa o la carga eléctrica, y una magnitud que se conserva como lo hace la energía o el momento lineal.



A diferencia de lo que ocurre con el momento angular de los objetos macroscópicos, a los que estamos acostumbrados, que puede tomar valores muy variados dependiendo de las acciones a las que se vean sujetos, la magnitud del espín de una partícula es siempre la misma para este tipo concreto de partícula. Es únicamente la dirección del eje de giro la que puede variar, aunque de una manera muy extraña.






Para un electrón, protón o neutron la cantidad de espín es siempre 1/2 del valor mínimo de momento permitido (ħ). Precisamente por eso esta cantidad de momento angular no estaría permitida para un objeto compuesto por cierto número de partículas orbitando sin que ninguna de ellas estuviese girando sobre sí misma. El espín sólo puede aparecer debido a que es una propiedad intrínseca de la propia partícula, es decir, que no surge del movimiento orbital de sus partes en torno a su centro.




Una partícula que, como el electrón, tiene un espín múltiplo impar de ħ/2 (ħ/2, 3ħ/3, 5ħ/2, etc) se llama fermión, y presenta una curiosa rareza: una rotación completa de 360º transforma su vector de estado no en sí mismo sino en el valor negativo de sí mismo; necesitaría por tanto de un giro de 720º para quedarse igual que antes del giro. La mayoría de las partículas de la Naturaleza son fermiones, las partículas restantes para las que el espín es un múltiplo entero de ħ (ħ, 2ħ, 3ħ, 4ħ, etc) se llaman bosones. Bajo una rotación de 360º el vector de estado de un bosón vuelve a sí mismo, y no a su negativo.





Si tomamos una partícula de espín 1/2, por ejemplo el electrón, el espacio de estados mecano-cuánticos posibles resulta ser bidimensional, de modo que podemos tomar una base de sólo dos estados que podemos representar como [arriba> y [abajo>, para el primero el espín gira a derechas alrededor de la dirección vertical hacia arriba y para el segundo lo hace de la misma manera hacia abajo. De la misma forma que en un plano euclidiano cualquier vector es una superposición lineal de las dos bases ortonormales consideradas, en este caso ocurre igual, cualquier estado posible de espín del electrón es una superposición lineal, por ejemplo:


w [arriba> + z [abajo>, siendo w, z dos números complejos. Puesto que el estado físico representado queda inalterado si multiplicamos las dos componentes por un número complejo distinto de cero, la razón z/q será el número complejo significativo que represente el estado de la partícula.


Este número complejo se representa sobre una esfera llamada de Riemann, tal como aparece en la figura. En el ecuador de la misma se encuentran los puntos singulares 1,-1, i y -i.



La esfera de Riemann juega un papel fundamental en cualquier sistema cuántico de dos estados, describiendo el conjunto de estados cuánticos posibles. Para una partícula de espín 1/2, su papel geométrico es particularmente evidente puesto que los puntos de la esfera corresponden a las posibles direcciones espaciales para el eje de giro. En otras situaciones el papel de la esfera de posibilidades de Riemann está bastante más oculto, con una relación mucho menos clara con la geometría espacial.


El extraño giro de 720º del electrón para quedarse igual es toda una paradoja. En muchas ocasiones nos parece que la mecánica cuántica presenta fenómenos completamente fuera de toda lógica, pero al analizar infinidad de situaciones completamente normales para nosotros a la luz de esta asombrosa teoría observamos que sin ella no tienen explicación. La propia cohesión de la materia, tal como la conocemos, o la existencia de las cuatro fuerzas fundamentales no tendrían sentido. En este último caso en sus fundamentos, paradojicamente, se encuentra el propio principio de incertidumbre. Un principio "engorroso" que parece que sólo sirve para impedirnos medir con infinita exactitud.


(1) Se admite que una "partícula" puede poseer partes individuales con tal que pueda ser tratada mecanocuánticamente como un todo simple, con un momento angular total bien definido.

2009/11/18

La medida natural de las cosas

La relación que tratamos de establecer entre dos cantidades puede ser engañosa. En ocasiones los valores más lógicos de las mismas nos alejan de la realidad y del fenómeno que tratamos de estudiar. El sentido común nos puede dar una aproximación del resultado capaz de guiarnos para encontrar la solución correcta, la que se amolda de verdad a la realidad.



Supongamos que queremos relacionar dos cantidades que se corresponden con una realidad palpable, por ejemplo dos longitudes de un determinado objeto, y nos dan las siguientes medidas: 2 y 1/2, 3 y 1/3, 4 y 1/4, ... n y 1/n. Siendo n un número natural. La división entre ellas no nos ofrece ningún conflicto, será 4, 9, 16, ... n2, nos está dando la cantidad de veces que una cantidad es mayor que otra. Sin embargo hay relaciones que pueden dar equívocos si nos dejamos guiar por el resultado puramente matemático. Por ejemplo, si nos fijamos en la figura que representa el fractal clásico llamado copo de Koch y su construcción, vemos que en cada iteración sustituimos un segmento de 3 unidades por cuatro segmentos de una unidad: justamente la relación entre log 4/ log 3 nos da la dimensión fractal de la figura, que es 1.261859… Si lo que queremos relacionar son las dos longitudes representadas por cualquier número natural N y su inverso 1/N, al hallar la relación similar a la anterior, del copo de Koch, nos encontramos con un valor negativo, -1, una dimensión negativa para un fractal, cuando físicamente no tiene ningún sentido, pues la dimensión fractal siempre es igual a la topológica (o dimensión aparente) más un coeficiente dimensional, tanto mayor cuanto más irregular es el fractal.


Matemático y lógico, Kronecker defendía que la aritmética y el análisis deben estar fundados en los números enteros prescindiendo de los irracionales e imaginarios. Fue autor de una frase muy conocida entre los matemáticos: "Dios hizo los naturales; el resto es obra del hombre" (Eric Temple Bell 1986, p.477. Men of Mathematics ).

Esa es la cuestión, en nuestro caso debemos convertir 1/N y N en dos nuevos números naturales que al relacionarnos, para expresar el valor que representa la dimensión del objeto, nos de un resultado coherente con la realidad que estamos observando. Las figuras que siguen a este párrafo nos aclaran el camino a tomar para encontrar una posible solución, para este caso particular.


Vemos la construcción de una figura cuando N=3, N=4 y N=5. En la primera figura si damos el valor 3 al lado, su perímetro será 27 (33), pero si le damos el valor 1/3, su nuevo perímetro será 3. Así ocurre para N=4 ó N=1/4 , etc, y en general para cualquier valor N y 1/N (con N finito, aunque tan grande como queramos). Siempre ocurrirá que si el lado es N el perímetro será N3 y si el lado es 1/N el perímetro será N, sin que para ello varíe la forma de la figura.


La conversión natural será la que transforma la pareja de medidas (1/N, N) en (N, N3) y el valor irregular, -1, que encontrábamos para la dimensión fractal de la curva se convertiría en 3. Este valor le daría a la curva la capacidad de llenar el espacio. Es un fractal con dimensión entera, de forma similar al caso de un movimiento aleatorio puro, que de cada N2 pasos realizado sólo se aleja N, de cualquier punto arbitrario de referencia que consideremos, y por tanto tiene una dimensión fractal igual a 2, capaz de llenar el plano.

En realidad, para nuestro caso (1/N, N), existen infinitas conversiones, responden a la expresión :

Dim. fractal (*)= 1 + 2/logL(N) , siendo L(N) el valor del lado que consideremos, como función de N. Para L(N)= 1/N tenemos el valor -1, para L(N)=N, le corresponde el valor 3, como hemos dicho. Para valores de exponente natural más negativos (1/N2 ) y mayores la dimensión se acerca asintóticamente a l. Para valores mayores de N, como N2, N3, o de mucho mayor exponente el valor asintótico será también 1.

Al final no podemos confiar ciegamente en el valor que nos dan las matemáticas, pues el mundo que representan es mucho más amplio que el mundo real y siempre necesitaremos de nuestro sentido común, en el análisis de los resultados encontrados. Por otra parte, paradójicamente, en ocasiones ocurre lo contrario: el sentido común nos ciega y nos impide ver una realidad más profunda que subyace en los resultados matemáticos.

(*)Tomando logaritmos en base N





Dualidad T, (1/N,N)



Como simple curiosidad, sobre el intercambio de valores 1/N y N, y como culturilla sobre teoría de cuerdas, todo esto puede recordarnos la llamada Dualidad-T:



En la expresión que representa los cuadrados de las energías de las excitaciones de una cuerda en un espacio con una dimensión curvada o compactada, K. Kikkawa y M. Yamanaka en 1984, observaron que la fórmula sigue teniendo el mismo aspecto si hacemos el intercambio R <--> 1/R. Siendo R el radio microscópico de la dimensión que se curva.

Desde un punto de vista físico esto indica que las energías de las excitaciones de una cuerda, cuando hay una dimensión extra de radio R, es la misma que la de una cuerda cuando el radio es 1/R. No ya las energías, sino todas las propiedades físicas de ambos sistemas son exactamente las mismas. Llama la atención, pues cuando R aumenta 1/R decrece, contradiciendo la experiencia de la vida diaria, que nos dice que las cosas pequeñas difieren de las grandes. Para una cuerda ello no es así.


Sobre "Unificación y dualidad en teoría de cuerdas", ver el número de agosto de 1998 de Investigación y Ciencia, de Luis E. Ibáñez Santiago.

2009/11/05

Lo que esconden los fractales y la energía oscura, una hipótesis

Los fractales esconden bajo sus “arrugas” parte de sí mismos. Suponiendo la hipótesis de un vacío cuántico fractal, la escurridiza energía oscura podría ser la consecuencia de la estructura fractal de las fluctuaciones cuánticas del vacío que conforman todo el espacio.


La medida de la costa de Bretaña
Benoït Mandelbrot se preguntaba cuánto medía la costa de Bretaña, o cualquier costa real que suele ser irregular e intrincada. Un geógrafo se lo habría respondido perfectamente, pero no era esa la repuesta que buscaba Mandelbrot. El geógrafo da por sentado que al medir la costa tiene que hacerlo con unos criterios prácticos determinados, se atiene a ellos, la mide y la registra para siempre en los libros de geografía.

Para Mandelbrot, la pregunta era mucho más transcendente de lo que puede parecer a simple vista, porque se dio cuenta de que la medida dependía de la unidad de medida con la que fuera a efectuarse. Si la mínima unidad de medida a tomar fuera un kilómetro hallaríamos un valor, y si esa mínima unidad fuera el doble encontraríamos un resultado menor. Conforme la unidad utilizada es menor, al efectuar la medida nos acercamos mejor a las irregularidades del terreno y hallamos un valor mayor. Para una costa matemática teórica, de hecho, la unidad de medida la podemos hacer tender a cero tanto como queramos y el resultado obtenido siempre será mayor. En el límite la longitud de cualquier costa teórica es infinita.

Dimensión fraccionaria de una costa
Las costas son ejemplos sencillos de unos objetos matemáticos que Benoït Mandelbrot llamó fractales, porque su estructura es discontinua, rota o fracturada (del latín “fractus”) y mantienen el mismo aspecto a diferentes escalas. A diferencia de los objetos geométricos continuos que conocemos como líneas o planos, los fractales son capaces de “llenar” más espacio del que deberían llenar. Las costas fractales, como líneas que son, deberían tener la capacidad de llenar una dimensión, pero realmente llenan 1.25, 1.30, 1.35… etc. Su dimensión, que es fraccionaria, está entre la línea y el plano, es decir entre 1 y 2, y conforme son más irregulares mayor es su dimensión, a la que llamamos dimensión fractal.



Vacío clásico y vacío cuántico
El vacío clásico y continuo es, en cierta forma, como una costa lineal y regular, sin entrantes ni salientes. El vacío cuántico es muy diferente, sus fluctuaciones le confieren una estructura irregular que nos puede recordar la estructura fractal de las costas de los países. De “lejos” no es diferente del vacío clásico, pero de “cerca” nos ofrece una visión muy diferente, las fluctuaciones ganan protagonismo porque dependen del inverso de la distancia: a distancia mitad son el doble de intensas. Esta diferencia entre el vacío clásico y el cuántico se puede observar, perfectamente, tratando de seguir las trayectorias de las partículas subatómicas. En el vacío clásico estas están bien definidas y son líneas continuas, en el vacío cuántico no existen como tales, no son propiamente trayectorias pues conforme las tratamos de observar con más detalle, más irregulares aparecen. Son fractales con una dimensión 2.

¿Vacío cuántico como un fractal?
Todo esto hace pensar en la posibilidad de considerar el vacío cuántico como una fractal, en el que la energía de las fluctuaciones cuánticas determinaría su grado de irregularidad, y en base a su valor (un escalar) se podría calcular la dimensión fractal de estas fluctuaciones que conforman todo el espacio.

Lo que esconden los fractales y la energía oscura, una hipótesis
Entre dos puntos A y B del espacio euclídeo se puede trazar una recta. La distancia entre los dos puntos siguiendo esta recta es la longitud de la misma. Sin embargo si esa recta la convertimos en una costa fractal real (sin las infinitas irregularidades de una costa fractal matemática), la distancia entre los dos puntos, siguiendo la costa, se puede hacer todo lo grande que se desee dependiendo de la cantidad de irregularidades de la misma.

Si observamos esta línea costera en la distancia, las irregularidades se disimulan y su aspecto se acerca al de una línea mucho más regular. Su distancia aparente también estará cercana a la de la línea recta AB. Sabremos la distancia real AB a través de la costa fractal y la distancia aparente, vista la costa desde lejos. En cierta forma parece que ha desaparecido una parte de la costa, una parte que desde lejos no logramos observar, porque queda escondida entre las irregularidades del fractal.

Si suponemos la hipótesis fractal de las fluctuaciones cuánticas del vacío, ¿la parte escondida por este inmenso fractal podría ser la llamada energía oscura?




En la figura:(representación del vacío
cuántico), los trazos más anchos se corresponden con fermiones (quarks, electrones...) y sus antipartículas, mientras que los trazos más finos corresponden a bosones (gluones, fotones, W+, W-, Z0,...). En lo concerniente al color de los quarks y gluones, se corresponden con la carga de color de los mismos mientras que las partículas insensibles a la interacción fuerte aparecen en blanco o gris.)



Lo que sabemos hasta ahora de la energía oscura
La naturaleza exacta de la energía oscura es una materia de especulación. Se conoce que es muy homogénea, no muy densa y no se conoce la interacción con ninguna de las fuerzas fundamentales más que la gravedad. Como no es muy densa, unos 10−29 g/cm³, es difícil de imaginar experimentos para detectarla en laboratorio. La energía oscura sólo puede tener un profundo impacto en el Universo, ocupando el 70% de toda la energía, debido a que por el contrario llena uniformemente el espacio vacío.

Dos posibles formas de la energía oscura son la constante cosmológica, una densidad de energía constante que llena el espacio en forma homogénea y campos escalares como la quintaesencia: campos dinámicos cuya densidad de energía puede variar en el tiempo y el espacio. De hecho, las contribuciones de los campos escalares que son constantes en el espacio normalmente también se incluyen en la constante cosmológica. Se piensa que la constante cosmológica se origina en la energía del vacío. Los campos escalares que cambian con el espacio son difíciles de distinguir de una constante cosmológica porque los cambios pueden ser extremadamente lentos.
Para distinguir entre ambas se necesitan mediciones muy precisas de la expansión del Universo, para ver si la velocidad de expansión cambia con el tiempo. La tasa de expansión está parametrizada por la ecuación de estado. La medición de la ecuación estado de la energía oscura es uno de los mayores retos de investigación actual de la cosmología física.