2009/06/11

Estructuras disipativas, método científico y entropía

De la interacción con nuestro entorno intercambiamos materia y obtenemos energía y conocimiento en bruto que después convertimos en ciencia y tecnología. La vida, los ecosistemas y las propias sociedades humanas son un tipo especial de estructuras llamadas disipativas que obtienen orden (disminuyen su entropía) a costa del entorno. Son estructuras abiertas que aumentan su información útil a partir de la información exterior. En el límite, este fenómeno es el que lleva a la ciencia a confirmar con experimentos la veracidad de sus teorías

Estructuras disipativas
En el equilibrio o cerca de él, no se produce nada interesante, todo es lineal. Cuando pueden ocurrir cosas sorprendentes es lejos del equilibrio: si llevamos un sistema lo bastante lejos del equilibrio, entra en un estado inestable con relación a las perturbaciones en un punto llamado de bifurcación. A partir de entonces la evolución del sistema está determinada por la primera fluctuación, al azar, que se produzca y que conduzca al sistema a un nuevo estado estable. Una fluctuación origina una modificación local de la microestructura que, si los mecanismos reguladores resultan inadecuados, modifica la macroestructura. Lejos del equilibrio, la materia se autoorganiza de forma sorprendente y pueden aparecer espontáneamente nuevas estructuras y tipos de organización que se denominan estructuras disipativas. Aparece un nuevo tipo de orden llamado orden por fluctuaciones : si las fluctuaciones del ambiente aumentan fuera de límite, el sistema, incapaz de disipar entropía a ese ambiente, puede a veces "escapar hacia un orden superior" emergiendo como sistema más evolucionado.

En estos nuevos tipos de estructuras y orden se basan la vida, la organización de un termitero, los ecosistemas y las propias organizaciones y sociedades humanas. Pero lo más importante es que este nuevo orden en el que el determinismo y el azar se llevan de la mano si que es un universal. Estas estructuras, al igual que la vida no aparecen y progresan por pura casualidad o accidente como se creía.


El método científico como límite del intercambio de información con el entorno.
Como comentaba en el post anterior, nuestros genes transportan una información preciosa conseguida del entorno a través de millones de años de intercambio y evolución. Nacemos, casi, como una hoja de papel en blanco, y a partir de entonces seguimos aprendiendo de nuestro exterior. De nuestros padres, de las demás personas y seres, del comportamiento de los otros, de todo lo que nos pasa y de la información que nos llega. Lo externo, como un todo, nos hace como somos. A la ciencia como estructura, en cierta forma le pasa igual. A través del método científico necesita, para avanzar, contrastar las teorías mediante experimentos que confirmarán o no su adecuación a la realidad. En ese sentido desde la menor prueba al mayor de los experimentos, son la forma de interactuar con el entorno para ganar en orden, información y complejidad. Experimentos tan formidables como los que se están realizando, o se realizarán, con el LHC nos permitirán confirmar un montón de teorías y suposiciones, o nos ayudarán a concebir otras nuevas, que seguirán cambiando nuestra sociedad y a nosotros mismos en un baile sin fin en la escala de la complejidad.


Y en ese curioso "baile", incluso si llega a ocurrir lo que se ha llegado a denominar "La singularidad" (singularidad tecnológica), la aparición de los ordenadores ultralistos (máquinas "más inteligentes que los seres humanos") como cuenta el artículo de 1993 escrito por el ingeniero informático y escritor de ciencia ficción Vernor Vinge, en el que sostiene que la aceleración del progreso tecnológico nos ha llevado "al borde de un cambio comparable a la aparición de la vida humana en la Tierra", la esencia no cambiará. En el hipotético futuro en el que las supermáquinas inteligentes o cualquier supercivilización nos supere, seguirá necesitando de su entorno para aprender y aprender cada vez más, seguirán necesitando contrastar sus hipótesis con la realidad y confrontando su tecnología con esa misma realidad.

Reflexiones: multiversos, espespacio-tiempo, mito
¿Hasta cuando? Hay un límite, nuestro universo no es infinito y su final será la llamada muerte térmica, la uniformidad total de la que ya no se podrá extraer ni energía ni información, el estado de máxima entropía y máximo desorden. Aunque haciendo una suposición más de ciencia ficción que de ciencia, antes de llegar a esto es de suponer que alguna de las civilizaciones más avanzadas habrá aprendido todo lo que se puede aprender sobre las leyes físicas de este universo, y podría tener una tecnología capaz de llevarla a otros universos en estados menos degradados (suponiendo que vivimos en un multiverso).


Entre todo esto, una reflexión más: seguimos suponiendo el espacio y el tiempo como el contenedor fundamental de todo lo que es y acontece en el universo (multiverso), pero las dos teorías física más formidables con las que contamos, la relatividad general y la mecánica cuántica y sobre todo su incipiente fusión a la que llamamos gravedad cuántica, nos cuentan que ni el espacio ni el tiempo son las entidades fundamentales que creemos sino que dimanan de otra puramente cuántica subyacente. El universo, el nuestro, tuvo un principio, pero ¿ el multiverso si existe tuvo un principio o siempre estuvo ahí? Es más, ¿tiene sentido seguir hablando en términos de tiempo y espacio, tal como los conocemos, sabiendo que hay alguna entidad cuántica más fundamental de la que emanan?

Primero fue el mito para explicar la realidad que no entendíamos, le han seguido la filosofía y la ciencia, y conforme avanzamos con ella nos va adentrando en un mundo que cada vez nos parece más mítico y menos real. Caminamos como un ciego que sólo cuenta con su inteligencia y su metódico bastón científico, y vivimos tiempos de grandes cambios que, espero, pronto (1) nos darán una nueva bella teoría sobre gravedad cuántica que nos ayude a entender mejor este mundo y a nosotros mismos. Un abrazo.

(1) Soy muy optimista.
La primera figura (estructuras disipativas) está tomada del estupendo blog "Hombres que corren con lobos"

Un amigo nos comenta sobre el interesantísimo cuento de Isaac Asimov:" La última pregunta". Os lo recomiendo.

2009/06/01

¿Puede dar vida inteligente un universo caótico?

Cada uno de los átomos que nos forman y las ideas que tenemos son ajenos.Todo cuanto somos lo sentimos muy dentro y muy nuestro, pero realmente proviene del exterior. Somos sistemas abiertos autoorganizados que necesitamos de la materia y de la información del entorno.

A diferencia de los sistemas cerrados, que no intercambian ni materia ni información con el exterior, nuestra entropía es capaz de disminuir, o, lo que es lo mismo, nuestra información y organización capaces de aumentar. Tomamos la información del exterior y ganamos en complejidad a costa de aumentar el desorden del entorno. En eso se basan los fundamentos de nuestra existencia.

Nuestros genes transportan una información preciosa conseguida del entorno a través de millones de años de intercambio y evolución. Nacemos, casi, como una hoja de papel en blanco, y a partir de entonces seguimos aprendiendo de nuestro exterior. De nuestros padres, de las demás personas y seres, del comportamiento de los otros, de todo lo que nos pasa y de la información que nos llega. Lo externo, como un todo, nos hace como somos.


Visto así, resulta difícil pensar que pudiera existir la vida a partir de un entorno caótico, sin leyes y sin orden. Sería completamente imposible, pues nuestro orden viene del entorno ordenado que nos rodea. De igual forma parece imposible pensar que nuestra inteligencia sea una pura casualidad, una isla entre un mundo sin inteligencia. Creo que nuestra inteligencia no puede aparecer en un mundo sin inteligencia, sin una inteligencia mucho mayor que la que disfrutamos en la actualidad. Los hombres del futuro y los seres mucho más inteligentes que nos sustituyan, sólo tienen una referencia que les permitirá seguir enseñándose y siendo cada vez más y más inteligentes. Esta referencia es su propio entorno, este universo, en cierta forma, inteligente que es capaz de transmitirnos orden e inteligencia. ¿Puede seguir haciendo seres cada vez más inteligentes un universo pura máquina-no inteligente?

En el post " El orden que vino de las estrellas", aclaraba que el orden, la baja entropía nos llega a través de la luz del Sol. "Pocos" rayos de radiación energética de baja entropía que nuestro planeta absorbe, y devuelve en forma de "muchos" rayos de radiación electromagnética de alta entropía. En el intercambio la Tierra se queda con la información, la baja entropía, suficiente para seguir soportando la vida y el orden que comporta. Por otra parte, también gracias a las estrellas, y a la fusión de los elementos primigenios, se formaron en su seno los elementos más pesados que forman nuestro cuerpo: carbono, nitrógeno, oxígeno, hierro, calcio, fósforo, etc.


Y todo comenzó con el Big Bang, que fue una explosión "en perfecto orden". No fue una explosión de la materia tal como entendemos que debe ser una explosión. Fue una explosión a partir de la cual se formó la materia y el espacio-tiempo. En cualquier explosión de un artefacto, se proyecta materia de forma desordenada hacia todas las direcciones, sobre un espacio ya existente, pero en la explosión inicial no fue así. El sistema que es el propio Universo comenzó su particular degradación entrópica, a partir de un mínimo de entropía, o de un máximo orden, que ha permitido el orden posterior de los sistemas que lo forman. Desde las galaxias o las estrellas hasta nuestro própio orden e inteligencia. Todo un misterio extraordinario, difícilmente entendible como pura casualidad.


A mi hija Alba. Por las eternas preguntas.

2009/05/18

Lentes gravitatorias, los gigantescos telescopios cósmicos

Dos rayos de luz que pasan a ambos lados de una estrella y que son desviados por ésta de la trayectoria recta pueden cortarse (ver la figura). Un observador que se encuentra en el punto de intersección verá dos imágenes de una misma estrella lejana. Esto, en esencia, es el efecto de lente gravitatoria.



El principio de equivalencia, principio fundamental de la teoría general de la relatividad, postula que en el campo gravitatorio todos los cuerpos son acelerados de igual manera e independientemente de su composición. Cualquier objeto, sea un satélite artificial, un cometa o un fotón cae en el campo gravitatorio de la Tierra con una misma aceleración 9,8 m/s2. Todos son atraídos de igual forma, pero se mueven de diferente manera. Su trayectoria se aproximará tanto más a una línea recta cuanto mayor sea su velocidad. La mayor velocidad de la naturaleza es la velocidad de la luz, por tanto, los fotones se moverán casi por una línea recta.

La curvatura de la trayectoria de un fotón cerca de una masa atractiva fue predicha por Albert Einstein y confirmada, junto con su teoría de gravitación, por A. Eddington durante un eclipse total de Sol (29-05-1919).El efecto es pequeño: un rayo de luz proveniente de una estrella lejana se desvía sólo 1,75´´ al pasar cerca del limbo solar. Eddington midió las posiciones de las estrellas cerca del disco solar durante un eclipse (sin eclipse las estrellas cercanas al disco no se verían) y las comparó con las posiciones verdaderas, medidas por la noche en otra época del año, cuando el campo gravitatorio del sol no altera la trayectoria de sus rayos. De esta comparación obtuvo la magnitud del efecto, que resultó muy cercana a la predicha por Einstein.


Dos rayos de luz que pasan a ambos lados de una estrella y que son desviados por ésta de la trayectoria recta pueden cortarse . Un observador que se encuentra en el punto de intersección verá dos imágenes de una misma estrella lejana. Esto, en esencia, es el efecto de lente gravitatoria.

Las lentes gravitatorias con simetría esférica producen dos imágenes, pero los campos gravitatorios de muchos objetos cósmicos, por ejemplo de las galaxias, no poseen simetría esférica y pueden producir un número impar de imágenes del objeto con diferentes magnitudes. Otro efecto de las lentes gravitatorias es el aumento de la radiación de la fuente, con la importancia que ello significa para fuentes, como los cuásares, que se encuentran en el universo profundo.


La distancia angular entre las imágenes que se obtienen durante el efecto de lentes galácticas, cuando en calidad de lente actúa una galaxia, es de aproximadamente un segundo de arco. Para el caso de efecto microlente esta distancia constituye sólo un milisegundo de arco. Desde la Tierra es imposible observar en la banda óptica dos imágenes separadas una distancia angular del orden de un milisegundo, pero en el caso de efecto de lente gravitatoria entre dos estrellas, su movimiento es mucho más rápido que cuando actúa una galaxia como lente, las estrellas están más cerca y la velocidad angular del movimiento es mayor.Por esta razón, las microlentes se investigan utilizando la variación del brillo de la estrella fuente.

El efecto de lente gravitatoria se observó por primera vez en objetos extragalácticos. La primera lente descubierta, y hoy la mejor investigada, es la QSO 0957+561 A,B. Se ha cartografiado detalladamente su estructura y se ha investigado la radiación del cuásar que constituye la fuente en casi todo el intervalo desde las ondas de radio hasta la radiación óptica. Las mediciones prolongadas de su brillo han permitido determinar la constante de Hubble mediante un método nuevo, basado en las diferencias observadas en la luz que recorre dos caminos diferentes. Midiendo la diferencia de los instantes de llegada de las señales se puede determinar la diferencia de los caminos ópticos, lo que, junto con la distancia angular conocida entre las imágenes, permite medir la distancia hasta el cuásar y la galaxia-lente. Comparando esta distancia con el corrimiento al rojo de los objetos se puede calcular la constante de Hubble.


Otro ejemplo de lente gravitatoria es la llamada Cruz de Einstein, QSO 2237+30. Su núcleo posee una distribución cuadripolar de densidad, y como resultado se forman cuatro imágenes brillantes distribuidas cruz. Aquí se puede intentar hallar el efecto microlente, que surge cuando el rayo cuásar-Tierra es cortado por una de las estrellas de la galaxia-lente. El resultado es un desdoblamiento adicional del rayo, la aparición de imágenes adicionales y la variación de su brillo total.

Finalmente, citaremos un tercer objeto también interesante llamado Anillo de Einstein, MG 1131+04, descubierto en la banda de radio durante las observaciones en el VLA. En la frecuencia de 5 GHz este objeto tiene el aspecto de un anillo un poco alargado, mientras que en la frecuencia de 15 GHz su forma se asemeja a dos lunas nuevas casi unidas.Analizando la imagen de este objeto en distintas partes del espectro, incluyendo el intervalo óptico, se puede deducir las dimensiones relativas de las regiones de la fuente que emiten en las bandas de radio y óptica. Obtenemos algo parecido a un telescopio cósmico gigantesco, que permite examinar los cuásares lejanos con un aumento lineal grande. Hoy se conocen más de una decena de anillos como este.


2009/05/06

Tiempo, espacio-tiempo y paradigma holográfico

Conforme avanza nuestro conocimiento sobre el universo aparecen más interrogantes, vuelven las eternas preguntas que se han hecho los filósofos de todos los tiempos, aunque la perspectiva ha cambiado sustancialmente. Los principios básicos que vislumbramos sobre la gravedad cuántica nos indican que el propio espacio-tiempo no es el fundamental, eterno e inmóvil referente que siempre hemos creído sino que emerge de una entidad fundamental discreta (no continua) y su propia geometría debe estar inextricablemente ligada a las relaciones causales entre sucesos.


El libro "The trouble with physics", titulado en español " Las dudas de la física en el siglo XXI. ¿Es la teoría de cuerdas un callejón sin salida?", escrito por un gran físico, Lee Smolin, me hizo pensar en su momento, cuando lo leí, en muchas cosas (es un libro crítico con la teoría de cuerdas y un buen libro de física) pero sobre todo en una de gran calado sobre la propia naturaleza del tiempo. Smolin, reflexionando sobre la futura teoría capaz de armonizar la relatividad general de Einstein y la mecánica cuántica (gravedad cuántica), habla de que tiene la sensación de que tanto una como la otra teoría están profundamente equivocadas sobre la naturaleza del tiempo. Piensa que estamos pasando por alto algo muy importante y esencial sobre el mismo.

¿Solución o problema? El tiempo.
Sitúa el arranque del problema a principios del siglo XVII, cuando Descartes y Galileo introdujeron, de forma realmente genial, el tiempo como una especie de otra dimensión nueva del espacio. En una gráfica situaban el espacio en el eje de las x y el tiempo en el eje de las y, de forma que el propio movimiento aparecía como una curva estática. El movimiento, en cierta forma, se congelaba y el cambio se presentaba estático e inmutable. Desde entonces esta forma de entender el tiempo, según Smolin, ha influido de forma notable en nuestra propia concepción del mismo y, posiblemente, nos ha desviado de su esencia que todavía desconocemos.

Esta reflexión me llevó a escribir el post sobre el ritmo justo del azar. A partir de un conjunto completamente aleatorio de números construimos un movimiento aleatorio browniano cuyo ritmo o velocidad de alejamiento de un punto arbitrario queda perfectamente determinado: cada NxN pasos que da el movimiento sólo lo alejan una distancia efectiva N. Tomemos como tomemos los números aleatorios para construir el movimiento obtendremos el mismo ritmo, una especie de velocidad de alejamiento, obtenida a partir de un conjunto amorfo de números. Establecemos una velocidad fundamental, un ritmo, a los que está ligada tiempo y distancia (pasos). Además este ritmo está directamente relacionado con una característica puramente geométrica, la dimensión fractal de la trayectoria del movimiento.


Universo conexo y paradigma holográfico
Para mi, fenómenos como la no-localidad y la coherencia cuántica nos dan una clave de lo que estamos pasando por alto. No sólo nos equivocamos con el tiempo sino con nuestra percepción de la realidad. La realidad formada por realidades completamente separadas nos ha ayudado a avanzar, a establecer y asentar nuestras verdades científicas, pero quizás ha llegado el momento de considerar que la única forma de seguir adelante sea descartar esa desconexión, si queremos de verdad profundizar en la esencia de nuestro mundo.

¿Es posible que el paradigma holográfico sea el nuevo camino? Personalmente creo que sí, pero no es es significativo porque yo lo crea, sino porque lo piensan así importantes físicos como Jacob D. Bekenstein, el Premio Nobel Gerard `t Hooft, de la Universidad de Utrech, Leonard Susskind, Juan Maldacena, de la Universidad de Harvard, o David Bohm.

Mucho antes de conocer los resultados que da la gravedad cuántica a la singularidad que representa un agujero negro, en base al paradigma holográfico deduje una solución similar (que por otra parte, no es difícil de deducir). De la misma forma que una parte de un holograma, separada del mismo, es capaz de reproducir (aunque con menor nitidez) el holograma completo, supuse que un agujero negro representaba esa misma separación o desconexión del total del universo. En base a esto pensé que en el interior de la singularidad que representa la materia vuelve a proyectarse hacia nuevas regiones del espacio-tiempo, en cierta forma, como un nuevo universo con sus propias características. Siempre siguiendo este hipotético paradigma, se podría suponer que su constante de acción de Planck sería bastante más grande que en el nuestro, lo que supondría una menor definición y mayor incertidumbre (se correspondería con la menor nitidez en la holografía).


Materia-energía e información
No sabemos con total seguridad si todavía existe un nivel de estructuración de la materia aún oculto para nosotros. En este caso los quarks y leptones serían formaciones compuestas de partículas todavía más elementales, pero, independientemente de ese nivel de elementalidad, del estudio de las propiedades de los agujeros negros se han deducido los límites absolutos que acotan la información que cabe en una región determinada del espacio. Teniendo en cuenta que esos límites dependen de la materia y energía contenida en ese espacio es asombroso que se pueda deducir un límite sin conocer ni siquiera, con absoluta certeza, el último componente de la materia.
Sea cual sea el último componente de la materia existe un límite en la información que es capaz de soportar una región determinada del espacio y curiosamente ese límite depende directamente de la superficie capaz de englobar esa región. Si esa superficie la consideramos como el área del horizonte de sucesos de un agujero negro, es como si la información estuviese escrita sobre esta superficie, de suerte que cada bit (cada 0 ó 1 de la codificación digital) correspondiera a 4 áreas de Planck (10 –66 centímetros cuadrados), como en una especie de holograma.

2009/04/16

Fractales contra dimensiones enrolladas, una "oposición" geométrica

Arrugar, romper o fracturar la continuidad clásica para aumentar la capacidad de un objeto de ocupar espacio, o enrollarlo para disminuir dicha capacidad. He aquí la cuestión, aparentemente trivial, que puede llevarnos a entender mejor el propio nacimiento de nuestro Universo.


Geometría fractal. La geometría sobre puntos, rectas, planos y demás objetos geométricos que se nos enseña en la escuela no es más que una abstracción, muy útil, sobre objetos reales de nuestra vida cotidiana. Cualquier superficie de la vida real, por muy perfecta que nos parezca nunca es un plano geométrico perfecto. Conforme la observemos con más y más aumento repararemos en un montón de imperfecciones que la van alejando de la geometría euclidea que nos han enseñado y la acercan, cada vez más, a una nueva geometría más cercana a la realidad que llamamos geometría fractal.


Imaginemos que en un espacio de tres dimensiones nos encontramos con una especie de diablillo virtual moviéndose con total libertad y tratando de recubrirlo por completo. Su trayectoria será una línea quebrada, con infinidad de recovecos, cuyo fin será pasar por todos los puntos del espacio. Como línea de trayectoria que es su dimensión topológica será la unidad, pero su capacidad de recubrir el espacio nos indica que estamos ante un objeto geométrico diferente a los típicos objetos euclidianos que hemos estudiado en la escuela, como el punto, la línea o el plano de dimensiones cero, uno o dos. Este tipo de objetos es lo que Benoît Mandelbrot llamaba en 1975 objetos fractales, concepto que había inventado a partir del adjetivo latino “fractus” (roto, fracturado). Posteriormente, en 1982, publicó el libro “The Fractal Geometry of Nature”, en donde proponía : “Un fractal es, por definición, un conjunto cuya dimensión de Hausdorff-Besicovitch es estrictamente mayor que su dimensión topológica.”


Dimensión fractal. La dimensión que define la trayectoria del diablillo ya no es la dimensión clásica de una línea (la unidad), sino que a ella debemos añadir un coeficiente dimensional que nos indica su grado de irregularidad.La suma de los dos coeficientes nos da un nuevo valor dimensional al que llamamos dimensión fractal. En este caso hacemos la siguiente suma: dimensión geométrica clásica (1) + coeficiente dimensional (2) = dimensión fractal (3).


Dependencia con la distancia. Hay un detalle más que nos da una idea del movimiento que lleva el diablillo. La distancia total que recorre al cabo de N de sus pasos debe ser sólo la raíz cúbica de su alejamiento efectivo a un punto arbitrario, es decir para alejarse una distancia efectiva d, de un punto cualquiera, su recorrido total deberá ser d 3. Este exponente (3) nos está dando, también, la dimensión fractal del movimiento. En cierta forma es lógico que sea así, pues el volumen que intersecta y recubre la trayectoria es del orden del cubo de su distancia característica (Volumen = Lado3).


¿Que tiene que ver todo esto con las dimensiones enrolladas? Supongamos una manguera vista desde una distancia de doscientos metros. A todos los efectos prácticos sólo vemos una línea y una sola dimensión característica, su longitud. Un objeto tridimensional, aunque con dos dimensiones significativas en el orden práctico se ha convertido en una linea unidimensional. Mejor aún, para poder visualizar más fácilmente la "oposición" geométrica a la que se refiere el título del post, imaginemos una lámina superfina (despreciamos su espesor) de un material moldeable. Cuando la lámina está perfectamente extendida, y sin arrugas, tenemos un objeto geométrico con dos dimensiones. Si la arrugamos y comprimimos convenientemente hasta conseguir una bola tendremos un objeto con tres dimensiones significativas, por lo que habremos aumentado en una su dimensión inicial. Si, por el contrario, la enrollamos perfectamente hasta formar un tubo muy fino obtendremos un objeto unidimensional, una línea, y habremos disminuido en una su dimensión inicial. En cierta forma vemos que realizamos operaciones opuestas, geométricamente hablando. Una suma dimensiones (fractalizar) y la otra resta (enrollar).


¿Tiene algún sentido práctico todo esto? Puede tenerlo, y mucho. Imaginemos un fractal con una dimensión típica Dfr cuyas características dependen de la distancia, como hemos visto dos párrafos antes, según dDfr. Si lo recluimos en una trampa cuántica en dos dimensiones (hemos disminuido en una las dimensiones del espacio), su nueva dependencia será dDfr-1. Será un fractal más estable, menos irregular en la medida en que también es más pequeña su dimensión fractal. Siempre de forma hipotética, de forma casual me di cuenta de que en un universo emergente esta simple cuestión geométrica pudo tener mucho que ver en la estabilidad que presenta, en la actualidad, el vacío cuántico. Para un vacío cuántico cuyas fluctuaciones de energía fueran un fractal de dimensión (3 + 6), unas supuestas dimensiones enrolladas que nos dejaran un espacio de (9 - 6) dimensiones (6 enrolladas) contribuirián decisivamente a su estabilidad. En el momento clave en que debían quedar definidas las constantes típicas de este universo (la propia naturaleza del cuanto), las supuestas dimensiones enrolladas pudieron tener un papel primordial, puramente geométrico, en su definitiva fijación. (Ver en la Revista Elementos de la Universidad autónoma de Puebla, un esbozo de esta teoría)

2009/04/07

Boltzmann, la ciencia humana y vulnerable

Los hallazgos de Boltzman fueron esenciales para los trabajos desarrollados, más de cincuenta años después, por el Premio Nobel Ilya Prigogine sobre los sistemas lejos de equilibrio, sistemas que nos engloban a nosotros y a todos los seres vivos. También han permitido entender la llamada flecha del tiempo y los sistemas irreversibles que son, prácticamente, todos los sistemas reales, y para entender el caos y el orden que puede derivar de él.


Cuando estudiaba la carrera tuve que elegir entre una serie de asignaturas optativas. Entre ellas había una que tenía toda la pinta de ser una “maría”, parecía seguro que consistiría en entregar un trabajito y aprobado seguro. La asignatura en cuestión se llamaba : La Historia de la Física. Así que la cogí y me puse a reunir todo el material bibliográfico que necesitaba. Pronto me di cuenta de que nada era como me lo había imaginado. Tuve que dedicar bastante más tiempo del que creía, y esa asignatura me hizo reflexionar no sólo sobre la física y su historia, sino sobre las personas y los acontecimientos tan diversos que habían influido en su desarrollo. Los científicos famosos se volvieron, desde entonces, personas de carne y hueso enclavadas en una época de la Historia y no simples nombres asociados a sus fórmulas.

Entre todos me impresionó Ludwig Boltzmann, nacido en Viena en 1844 en el seno de una familia acomodada que pasó su niñez en un entorno tranquilo siempre ayudado por su devota madre Katharina Paurnfeind. Era un estudiante ambicioso e impaciente, y en sus años mozos su interés estuvo centrado en la naturaleza, coleccionando y clasificando insectos, y estudiando las plantas. Fue atomista en una época en que muchos de sus colegas más ilustres estaban en contra de esa idea que ahora consideramos tan normal y lógica. Tenía una personalidad compleja, atormentada y fácilmente susceptible a cualquier crítica a sus convicciones, era una especie de panteísta y un entusiasta de Darwin.

En la relación entre sus muchos opositores científicos su carácter tendente a la misantropía no le ayudó en nada y contribuyó a que su vida terminara en fatal desenlace. El más enconado de sus colegas fue Wilhelm Ostwald, con el que mantuvo fuertes discusiones en algunos de los congresos en los que se reunían. Tanto él como otros no entendieron bien la base estadística de los razonamientos de Boltzmann. Ostwald recibió el Premio Nobel de Química en 1909, tres años después de que el desdichado Boltzmann se quitara la vida en un triste episodio, aprovechando que su mujer y sus dos hijas lo habían dejado solo y se bañaban a escasos metros de su casa de veraneo en Duino, cerca de Trieste. También, tres años después de su muerte los trabajos de Jean Perrin sobre las suspensiones coloidales (1908-1909) confirmaron finalmente las ideas de Boltzmann y convencieron a la comunidad científica de la existencia de los átomos.

A partir de la idea de que la materia está formada por átomos, como su parte más minúscula (aunque ahora sabemos que no son los constituyentes más pequeños), imaginó los estados macroscópicos de un sistema como derivados de otros microscópicos que afectan a los átomos y moléculas. Supuso que los átomos se podían mover de forma aleatoria a lo largo de las tres dimensiones y que podían ocupar una serie de niveles de energía. A partir de estas premisas pensaba que cada estado macroscópico era el resultado de una serie de estados microscópicos asociados con una determinada posibilidad. Cuanto mayor fuese esa probabilidad mayor sería la tendencia del sistema a ocupar ese macroestado. Bolztmann gracias a esas ideas fue pionero y un artífice esencial de una nueva disciplina física que se llamó Mecánica Estadística.

En base a estas ideas descubrió una expresión muy conocida e importante que relaciona la entropía de un sistema, o su tendencia natural al desorden, con una serie de microestados que afectan a sus mínimos componentes : S = K ln W .
Donde S es la entropía, K es una constante de proporcionalidad llamada de Boltzmann y ln W es el logaritmo natural del número de microestados asociados a una determinada configuración macroscópica del sistema. Uno de los aspectos más importantes que describe esta ecuación es la posibilidad de dar una definición absoluta al concepto de la entropía. Mientras que en la descripción clásica de la termodinámica, carece de sentido hablar del valor de la entropía de un sistema, siendo relevantes sólo los cambios en la misma, en la teoría estadística se permite definir la entropía absoluta de un sistema.

Un ejemplo sencillo nos ilustrará sobre el significado de la entropía y de la expresión de Boltzmann. Supongamos un saquito lleno de monedas. Si las ordenamos sobre la mesa, todas juntas con la cara hacia arriba, hemos conseguido que el sistema tenga una entropía mínima (cero) que se corresponde con un máximo orden. Sólo existe un microestado asociado a esta configuración {todo caras} y el logaritmo de la unidad es cero. Sería similar al orden que tiene una estructura cristalina a cero grados absolutos, sólo una configuración posible, máximo orden y entropía cero. Si volvemos a poner las monedas en el saquito, lo movemos bien, y las dejamos caer desordenadamente sobre la mesa el estado macroscópico que obtenemos está asociado a muchos estados microscópicos diferentes aleatorios. Cada vez que repitamos la operación obtendremos la misma sensación de desorden y nos será difícil distinguir la configuración actual de otra anterior. En este caso el valor de W de configuraciones es máximo y por tanto también la entropía, y mínimo el orden. Este estado es similar al llamado equilibrio térmico de un sistema, el de máximo desorden al que tienden de forma natural todos los sistemas aislados a los que no se les aporta orden desde el exterior.


Los hallazgos de Boltzman fueron esenciales para los trabajos desarrollados, más de cincuenta años después, por el Premio Nobel Ilya Prigogine sobre los sistemas lejos de equilibrio, sistemas que nos engloban a nosotros y a todos los seres vivos. También han permitido entender la llamada flecha del tiempo y los sistemas irreversibles que son, prácticamente, todos los sistemas reales, y para entender el caos y el orden que puede derivar de él.

Cuando hice el trabajo en la carrera estaba sugestionado por su muerte que la atribuí, de forma un tanto romántica e idealista, a la incomprensión de sus colegas hacia sus nuevas ideas revolucionarias, sin tener muy en cuenta sus posibles problemas psicológicos. Sea como fuera siempre veré a Boltzmann como un hombre, vulnerable como lo somos todos, luchando con su talento, su ciencia y sus desdichas por encontrar la verdad detrás de casi-una-quimera, como son todas las verdades científicas antes de ser confirmadas.

De mi colaboración con Libro de notas : Ciencias y letras.

2009/03/20

El ritmo justo del azar

El azar, el puro azar tiene su "ritmo" justo de cambio. Ni más, ni menos. Lo podremos "tentar" ofreciéndole más y más grados de libertad ... él los tomará, pero no conseguiremos ni retrasar, ni acelerar su ritmo bajo ningún concepto. Siempre seguirá fiel a sus "principios", que básicamente son muy sencillos. En cierta forma nos está dando una lección que deberíamos aprender. Referido al movimiento browniano y a su capacidad de recubrir dos dimensiones. Cuando lo trasladamos a dimensiones superiores sigue desplazándose por todas las dimensiones posibles, pero sólo es capaz de seguir recubriendo dos, contra lo que podría parecer.

Cada vez que lanzamos una moneda al azar puede salir cara o cruz, independientemente del resultado que hayamos obtenido en un lanzamiento anterior. Así de simples son las leyes que rigen el puro azar.


A partir de los resultados que vayamos obteniendo en sucesivos lanzamientos podemos confeccionar una tabla como la de la figura, que se corresponde con una tanda de 100 lanzamientos. Esta tabla y la que vamos a considerar, que en general puede contener miles de resultados es algo estático, sin movimiento, pero nos ayudará a desentrañar los entresijos del movimiento al azar que llamamos movimiento browniano, en honor al naturalista escocés Robert Brown que lo observó a principios del siglo XIX, cuando estudiaba suspensiones en el agua de granos de polen y esporas de musgos. Es un movimiento en zig zag, arbitrario, hacia cualquier dirección posible de desplazamiento.

A partir de una tabla, como la de la figura, tomaremos parejas consecutivas de unos y ceros.La primera parte de la pareja será la x y la otra la coordenada y. Los unos significarán "avanza 1" y los ceros querrán decir "retrocede 1". En un plano partiremos del punto (0,0) y conforme vayamos traduciendo la tabla a movimientos en el plano estaremos representando el movimiento aleatorio que hemos llamado browniano.



Azar y dimensión fractal
En un movimiento lineal cada uno de los puntos de su trayectoria viene definido por un solo número que nos indica su distancia al origen, se habla de que tiene una dimensión (el largo). En un plano necesitamos dos números para identificar cada uno de sus puntos, las coordenadas x/y o el largo y el ancho, por lo que decimos que tiene dos dimensiones. El movimiento browniano, como movimiento lineal que es tiene dimensión topológica 1, pero asombrosamente es capaz de recubrir el plano, de llenarlo. De ahí que digamos que su dimensión como fractal sea 2, porque es capaz de recubrir un espacio de dimensión 2. A las figuras tan tortuosas e intrincadas como este movimiento aleatorio, Benoit Mandelbrot las llamó fractales, del latín "fractus" que significa fracturado o roto, discontinuo.Y este movimiento es, sin lugar a dudas, muy buen representante de esta nueva categoría de objetos geométricos omnipresentes en la naturaleza.

Cada momento el movimiento aleatorio avanza o retrocede en sus coordenadas x ó y, independientemente de lo que hiciera en el instante anterior, tiene absoluta libertad para desplazarse a través de cada una de las coordenadas. Esta idea se tiende a trasladar cuando el movimiento ocurre en un espacio de tres dimensiones como nuestro espacio ordinario, o de más dimensiones, y es correcta. De la misma forma tendemos a pensar que, también, en un espacio tridimensional el movimiento browniano será capaz de llenarlo, o cubrirlo, por completo. Esa es la idea que tenía yo al empezar a estudiarlo y la idea que ha tratado de defender algún lector, en alguna ocasión, a capa y espada, pero como demostraremos es una idea equivocada.

La magia del número 2
El valor 2 que caracteriza la dimensión fractal de este movimiento, también se puede definir de una manera muy intuitiva: necesita realizar N2 pasos para alejarse de un punto cualquiera de referencia, sólo, N pasos efectivos. En tres dimensiones debería efectuar N3 pasos totales para alejarse, sólo, N pasos efectivos, pero como veremos eso no depende del número de dimensiones o grados de libertad sino de una característica independiente de las propias del espacio en que se mueve. Para demostrar esto nos fijaremos en la definición intuitiva que relaciona la distancia total con la efectiva.


La distancia total que recorre la partícula animada por un movimiento browniano es proporcional al número de pasos N, sin embargo la distancia efectiva se encontraría después de sumar los desplazamientos positivos y negativos. Para definir el resultado de esa suma existe una medida de dispersión apropiada que llamamos desviación típica, que para la distribución binomial con la que se corresponde el azar como lo hemos considerado resulta ser la raíz_cuadrada(N/4), pues es igual a raíz_cuadrada(Npq), siendo n = p = 1/2, ya que la posibilidad de que salga 0 ó 1 es la misma, y su suma debe ser la unidad.

Después de N pasos, la distancia efectiva para cada dimensión, considerada independiente, será raíz_cuadrada(N/4). Si consideramos 3 dimensiones la distancia efectiva será raíz_cuadrada(3 N/4). Esta magnitud la comparamos con la distancia total recorrida después de los N pasos: N raíz_cuadrada(3). Para N suficientemente grande sólo resulta significativa la comparación entre N y raíz_cuadrada de N, independientemente de que multipliquemos los dos términos por 3, 4, 5, ... d, cualquiera que sean las dimensiones del espacio considerado. De la comparación anterior resulta el valor de 2 de su dimensión fractal, o la consideración de realizar N2 pasos totales para sólo conseguir N efectivos.

Recapitulando
El movimiento browniano sólo es capaz de recubrir un espacio de 2 dimensiones (un plano). En un espacio de 3 ó más dimensiones su "ritmo" de distanciamiento de cualquier punto arbitrario, que consideremos como referencia, no es lo suficientemente "lento" para poderlo recubrir. Para recubrir un espacio de 3 dimensiones su ritmo de distanciamiento debería ser de N3 pasos totales para recorrer sólo N (dimensión fractal 3), para un espacio de 4 dimensiones serían N4 pasos totales para sólo N efectivos, y así sucesivamente. Sin embargo, el ritmo del movimiento lo imprime la desviación típica de la distribución binomial, que no depende de la dimensión del espacio, y cuyo valor es invariablemente igual a la raíz_cuadrada (N/4). Por eso, sea cualquiera el espacio considerado con tres o más dimensiones la dimensión fractal del movimiento browniano seguirá siendo 2. Para aumentar la dimensión fractal del movimiento deberíamos conseguir que cada nuevo paso tuviera "memoria" del resultado de los pasos anteriores y así disminuir su "ritmo" de alejamiento. Es como si en una carrera de 2 Km. nos obligaran a cumplimentar 200 tareas diferentes a lo largo de diferentes puntos del trayecto. Para una cierta velocidad conseguimos cumplimentar sólo 100 tareas y nos damos cuenta que para cumplimentar las 200 debemos disminuir el ritmo, o de lo contrario será imposible. De la misma manera el azar tiene su "ritmo" y ese ritmo sólo le permite recubrir un plano, no un espacio de 3 ó más dimensiones.