2007/05/31

El teorema de Gödel, sobre la verdad y la demostrabilidad

El teorema de Gödel es equiparable por su importancia a la teoría de la relatividad de Albert Einstein, y es una de las construcciones fundamentales de las matemáticas de todos los tiempos. Gödel utilizó el rigor de las matemáticas para demostrar, sin lugar a dudas, que las matemáticas mismas son incompletas. En su artículo de 1931, Gödel demuestra que en cualquier sistema lógico basado en axiomas y reglas de inferencia, existen enunciados cuya verdad o falsedad no vamos a poder decidir, basándonos en la propia lógica matemática del sistema. Antes de Gödel esto ni siquiera se consideraba, pues lo interesante de un enunciado era poder demostrar que era verdadero o bien era falso. A partir de Gödel aparece una diferencia muy sutil entre verdad/falsedad y demostrabilidad.

El teorema de Gödel tiene que ver con enunciados que hacen referencia a sí mismos. Sócrates afirmaba, en su famosa frase:" Yo sólo sé que no sé nada". Se contradecía, al afirmar que sólo sabía una cosa y, al mismo tiempo, no sabía nada:hacía referencia a si mismo y ahí es donde residía su contradicción. A principios del siglo XX (1902) el gran matemático y filósofo Bertran Russell, que entonces era un joven de 30 años, le envió una carta al gran matemático Gottlog Frege, uno de los creadores de la lógica simbólica, en la que le planteaba una paradoja que generaba una contradicción en su sistema de axiomas (ver explicación sencilla). Frege había publicado ya un primer tomo tratando de sistematizar toda la matemática en base a la pura lógica, pero al recibir la carta de Russell se dio cuenta que la obra de sistematización, que le había empleado toda su vida, quedaba en entredicho. Así lo reflejó, con tristeza, al publicar su segundo tomo en el que debía concluir su labor sistematizadora.

Al cabo de unos años (1913), el propio Rusell y otro gran matematico, Alfred North Whitehead, trataron de reparar el daño hecho por su paradoja, al formidable edificio de la lógica matemática, escribiendo una obra monumental que titularon Principia Mathematica. Llegaron a desarrollar un sistema matemático de axiomas y reglas de inferencia, cuyo propósito era el que fuera posible traducir en su esquema todos los tipos de razonamientos matemáticos correctos. Todo estaba especialmente cuidado para impedir los tipos de razonamiento paradójico que conducían a la propia paradoja de Russell. Posteriormente, el matemático David Hilbert se embarcó en la tarea de establecer un esquema mucho más manejable y comprensible. Se incluirían todos los tipos de razonamientos matemáticamente correctos para cualquier área matemática particular. Además, pretendía que fuera posible demostrar que el esquema estaba libre de contradicciones. Entonces, las matemáticas estarían situadas, para siempre, sobre unos fundamentos inatacables.
Pero en 1931 Kurt Gödel, un joven matemático austríaco de 25 años, publicó su famoso artículo" Sobre proposiciones formalmente no decidibles en Principia Mathematica y sistemas relacionados" y desmontó, definitivamente, la soberbia estructura montada sobre la lógica matemática, que se suponía completa. Destrozó el programa planeado por Hilbert, porque demostró que cualquiera de estos sistemas matemáticos precisos (formales) de axiomas y reglas de inferencia (finitos), siempre que sea lo bastante amplio para contener descripciones de proposiciones aritméticas simples y siempre que esté libre de contradicción, debe contener algunos enunciados que no son demostrables ni indemostrables con los medios permitidos dentro del sistema. De hecho, por sorprendente que parezca, Gödel demostró que el mismo enunciado de la consistencia del propio sistema axiomático debe ser una de esas proposiciones indecidibles.

Gödel nos descubrió que la verdad es una categoría superior a la demostrabilidad, y que su argumento nos da la posibilidad, mediante intuición directa, de ir más allá de las limitaciones de cualquier sistema matemático formalizado. Penrose utiliza el argumento de Gödel para demostrar el funcionamiento no algorítmico de la mente. El sistema matemático más perfecto que podamos conseguir, con un número finito de axiomas y reglas de inferencia, es incapaz por principio de probar la verdad/falsedad de enunciados que nosotros, desde fuera del sistema, advertimos sin demasiada dificultad. Un ordenador basado en la programación automática que conocemos, a base de algoritmos matemáticos, tiene una limitación fundamental independiente de que el programa sea mejor o peor o que su memoria y capacidad de cálculo sean de mayor o menor potencia.

Nota (última edición -11 h. 3 junio,2007):

Entre las numerosas demostraciones del teorema de Gödel que han aparecido, es muy interesante la demostración que ha hecho Gregory Chaitin con base en argumentos de la teoría de la información. Con este lenguaje, la forma del enunciado del teorema sería:

" Si un teorema contiene más información que un conjunto dado de axiomas, entonces es imposible derivar dicho teorema a partir de los axiomas".

Tanto en física como en matemáticas la información es una magnitud fundamental que nos puede guiar por caminos, aparentemente, impracticables. La teoría de la información, por ejemplo, nos acota la cantidad de información que puede contener una determinada región del espacio, pues está íntimamente relacionada con la entropía. (Ver la entrada: ¿Universo holográfico?)



Página web: Sobre el Teorema de Gödel, de la Universidad Autónoma de México (también en PDF)

Libro: " La nueva mente del emperador" de Roger Penrose. Ver el apartado en que utiliza el argumento de Gödel para demostrar el funcionamiento no algorítmico de la mente.

2007/05/23

El universo elegante

Según Einstein, la teoría de la relatividad general era demasiado hermosa para ser errónea. Mediante el principio de equivalencia extendió la sencilla simetría por la que las leyes de la física son idénticas para todos los observadores, en cualquier tiempo y lugar del universo, al caso en que dichos observadores se encuentran sujetos a movimientos acelerados. De Hecho, un observador con movimiento acelerado puede opinar que él, en realidad, está en reposo y la aceleración que experimenta es debida a un campo gravitatorio. Los efectos son completamente equivalentes.

En esa base tan simple y elegante descansa la teoría más bella y poderosa que tenemos sobre la gravedad. En cierta forma, la gravedad refuerza la simetría, garantiza que todos los puntos de vista de los observadores, todos los marcos de referencia posibles, tienen igual validez. Las fuerzas nuclear fuerte, débil y electromagnética también están conectadas con simetrías pero, en este caso son más abstractas que las asociadas a la gravedad, requieren de espacios más complejos y extendidos. Al igual que, en la relatividad general, la simetría entre todos los posibles puntos ventajosos de observación requiere la existencia de la fuerza gravitatoria, el resto de las fuerzas es necesaria para que el universo abarque simetrías especiales. Estas simetrías, llamadas gauge, fueron desarrolladas primero por Hermann Weyl en la década de 1920 y por Chen_Ning Yang y Robert Mills en la década de 1950 y son la base del esfuerzo de los físicos en lograr la unificación de las cuatro fuerzas fundamentales.

Con el nacimiento de la teoría de cuerdas se logró un avance importantísimo, un principio de compatibilidad entre las dos grandes teorías actuales de la física, la relatividad general y la mecánica cuántica que parecían incompatibles. La presunción de que las partículas no eran puntuales sino el resultado de una cuerda vibrante, eliminaba los molestos infinitos asociados a los campos cercanos a las partículas puntuales, además introducía de forma natural a la partícula mensajera de la gravedad: el gravitón, una partícula de masa cero y spin 2, predicha por la relatividad general. La teoría de cuerdas resultaba ser una teoría cuántica y gravitatoria.

Desde los comienzos de la teoría de cuerdas, como una especie de entelequia matemática para explicar las interacciones entre los componentes de los hadrones (nucleones, como protón y neutrón), hasta su proliferación en cinco tipos diferentes de teorías y el nacimiento de la teoría M que las engloba, la aventura científica que supone ha cautivado a miles de científicos de todo el mundo. Involucra la física con las matemáticas más abstractas, que todavía no han sido descubiertas, y en esa intrincada andadura encontramos a un verdadero genio en ambas disciplinas: Edward Witten. En el camino se ha encontrado una extraña simetría llamada dualidad T, o de radio grande/radio pequeño, por la cual las propiedades físicas de cierto tipo de cuerda, en un universo dotado de una dimensión circular de radio R, son absolutamente idénticas a las propiedades físicas de otro tipo de cuerda en un universo dotado de una dimensión circular de radio 1/R. Las cinco teorías de cuerdas existentes, junto con la teoría M, se muestran duales entre si y unidas en un solo marco teórico.

Las once dimensiones espaciotemporales de la teoría M y la forma en que se enrollan las dimensiones ocultas en los espacios de Calabi-Yau nos indican que la unidad cosmológica de las fuerzas fundamentales se consigue más fácilmente utilizando el marco de la teoría M. Pero las cuerdas ya no están solas, la teoría M incluye otros objetos: membranas vibratorias bidimensionales, burbujas tridimensionales que se ondulan, llamadas tribranas, y además una gran cantidad de otros ingredientes diversos.

Esto y muchísimo más, lo encontraréis, magníficamente explicado, en el apasionante libro de Brian Green "EL UNIVERSO ELEGANTE. Supercuerdas, dimensiones ocultas y la búsqueda de una teoría final", de la Editorial Crítica.Barcelona. 2007.

Nota.- José Luis, un amable lector nos envía unos enlaces a videos explicativos, relacionados con el libro, y un par de post de su blog:

La teoría de cuerdas (1)
La teoría de cuerdas (2)

Documentales de El universo elegante:

Parte 1, El sueño de Einstein
Parte 2, La clave está en la cuerda
Parte 3, Bienvenido a la 11ª dimensión

2007/05/15

Los tres primeros minutos del universo

Este es el título de un clásico de la divulgación científica. El Premio Nobel de Física de 1979 y profesor de la Universidad de Harvard Steven Weinberg nos explica en unos cuantos "fotogramas" la evolución de los tres primeros minutos del universo, previa introducción sobre la expansión del universo y sobre el fondo de radiación. Sus conocimientos sobre el microcosmos, sobre las partículas más pequeñas que forman la materia, nos abren las puertas a un espectáculo grandioso y único. Admite que no se puede empezar la "película" en el tiempo cero y con temperatura infinita, pero las cosas parecen bastante claras ya en el:

Primer fotograma: Cuando apenas ha transcurrido una centésima de segundo y la temperatura se ha enfriado hasta unos cien mil millones de grados Kelvin o absolutos ( el cero está sobre los -273 ºC), el universo está lleno de una sopa indiferenciada de materia y radiación, en estado de casi perfecto equilibrio térmico. Las partículas que más abundan son el electrón y su antipartícula, el positrón, fotones, neutrinos y antineutrinos. El universo es tan denso que incluso los huidizos neutrinos, que apenas interactúan con la materia, se mantienen en equilibrio térmico con el resto de la materia y radiación debido a sus rápidas colisiones. La densidad de la masa-energía en ese momento es del orden de 3,8 mil millones de veces la densidad del agua en condiciones terrestres normales. El tiempo característico de expansión del universo es de 0,02 segundos y el número de partículas nucleares (protones y neutrones) es del orden de un nucleón por 1000 millones de fotones, electrones o neutrinos. Las reacciones más importantes son: (a)Un antineutrino más un protón dan un positrón más un neutrón y viceversa.(b) Un neutrino más un neutrón dan un electrón más un protón y a la inversa.

Segundo fotograma: La temperatura ahora es de 30.000 millones de grados Kelvin y desde el primer fotograma han pasado 0,11 segundos. Nada ha cambiado cualitativamente, aunque la densidad de la energía ha disminuido con la cuarta potencia de la temperatura y el ritmo de expansión ha disminuido con su cuadrado. El tiempo característico de expansión es ahora de 0,2 segundos y las partículas nucleares todavía no se hallan ligadas a núcleos, aunque con la caída de la temperatura es ahora más fácil que los neutrones, más pesados, se conviertan en protones que al revés. Su balance es del 38% de neutrones por el 62% de protones.

Tercer fotograma: La temperatura del universo es de 10.000 millones de grados Kelvin. desde el primer fotograma han pasado 1,09 segundos y la densidad y la temperatura han aumentado el tiempo libre medio de los neutrinos y antineutrinos que empiezan a desacoplarse de la radiación, electrones y positrones y a comportarse como partículas libres. La densidad total de la energía es menor que en el fotograma anterior en la cuarta potencia de la razón de las temperaturas, por lo que viene a ser unas 380.000 veces mayor que la del agua. El tiempo característico de expansión es ahora de unos 2 segundos y los positrones y electrones comienzan a aniquilarse con mayor rapidez de la que pueden ser recreados a partir de la radiación. Todavía no se pueden formar núcleos estables, y la proporción neutrón-protón es ahora 24-76 %.

Cuarto fotograma: La temperatura es ahora de 3.000 millones de grados Kelvin, han pasado 13,82 segundos del primer fotograma y los electrones y positrones empiezan a desaparecer como componentes destacados del universo. El universo está lo bastante frío para que se formen diversos núcleos estables, como el helio común formado por dos protones y dos neutrones (He4). Los neutrones aún se convierten en protones, aunque más lentamente. La proporción de nucleones es ahora del 17% de nuetrones y del 83% de protones.

Quinto fotograma: La temperatura es de 1.000 millones de grados, sólo 70 veces más caliente que el Sol.Desde la primera imagen han pasado tres minutos y dos segundos. Los electrones y positrones han desaparecido, en su mayor parte, y los principales componentes del universo son ahora fotones, neutrinos y antineutrinos. Ahora el universo está lo suficientemente frío para que se mantengan unidos los núcleos del tritio y helio tres, así como los del helio ordinario, pero no se pueden formar, todavía, cantidades apreciables de núcleos más pesados. El balance neutrón-protón es ahora del 14-86 %.

Un poco más tarde: A los tres minutos y cuarenta y seis segundos del primer fotograma, la temperatura es de 900 millones de grados Kelvin y comienza la nucleosíntesis, la proporción en peso de helio es ya el doble de la proporción de neutrones entre las partículas nucleares, es decir del orden del 26%. A los 34 minutos y cuarenta segundos del primer fotograma (300 millones de grados) los procesos nucleares se han detenido y las partículas nucleares están ahora en su mayoría ligadas a núcleos de helio o son protones libres. hay un electrón por cada protón libre o ligado, pero la temperatura es todavía alta para que formen átomos estables.

Durante 700.000 años más el universo seguirá expandiendose y enfriándose, pero no ocurrirá nada de interés.Después podrán formarse núcleos y átomos estables y la falta de electrones libres hará que el contenido del universo sea transparente a la radiación. El desacoplamento de la materia y la radiación permitirá a la materia comenzar a crear galaxias y estrellas."Después de otros 10.000 millones de años, aproximadamente, los seres vivos comenzarán a reconstruir esta historia".

El primer fotograma podría resumirse como:" Al principio fue la luz". La radiación (luz) y la materia en equilibrio térmico y estado indiferenciado. Es la impresión más fuerte que guardo de cuando leí el libro la primera vez.


Libro:
"Los tres primeros minutos del universo". Steven Weinberg. Madrid 1980. Alianza Universidad.
Nota: La segunda figura es el mapa de las anisotropías del fondo de radiación cósmica.

2007/05/08

El misterio de la materia-antimateria

Las simetrías que observamos en la naturaleza provienen de leyes sencillas muy convenientes para simplificar nuestro conocimiento. En ese marco de sencillez, las leyes del microcosmos contemplan una simetría total entre materia y antimateria: al principio de la creación del universo debió haber la misma cantidad de ambas, pero algo ocurrió que permitió crear una leve asimetría entre ellas e inclinó, decisivamente, la balanza por la materia.

En un momento determinado, el universo visible estaba al rojo vivo y no era más grande que la cabeza de un alfiler. Las tremendas condiciones, la elevadísima temperatura, generaban cantidades inmensas de partículas y antipartículas de todo tipo. En el universo había mucha materia y ,exactamente , la misma antimateria. Por cada quark había un antiquark, pero en cierto momento se puso en acción el mecanismo conjeturado por el físico ruso Andrei Sajárov (1967). Por cada mil millones de partículas hubo un par más de quarks y según se iba enfriando el universo, los antiquarks chocaban con los quarks y se aniquilaban entre si. Al final quedaron unos cuantos quarks que se combinaron en tríos para formar los nucleones, protones y neutrones, que es el material más abundante en la materia ordinaria de nuestro universo.

Según Sajárov, la evolución de la asimetría material del universo dependía de tres propiedades de la naturaleza: la creación del universo en una gran explosión, la violación de la invariancia CP (carga-paridad) y la existencia de una fuerza nueva capaz de crear-aniquilar nucleones. Las dos primeras acababan de comprobarse en 1964, el descubrimiento de la radiación de fondo, vestigio fósil del Big Bang, fue una prueba irrefutable de la hipótesis de la gran explosión, y la detección, por un grupo de físicos de partículas de Princeton, de ciertas modalidades "prohibidas" de desintegración de kaones que sólo podían ocurrir si se daba una ligera violación de la simetría CP.

La propiedad que permite la violación de la simetría CP parece depender de la existencia de un mínimo de tres familias fermiónicas. De ahí el papel fundamental que juegan la extrañeza, los quarks t y b, los muones y los leptones tau. Sin ellos, habría habido la misma cantidad de materia que de antimateria, y hace mucho que ambas se habrían aniquilado entre si.

La tercera premisa de Sajárov es más especulativa, porque exige que toda la materia sea radiactiva, aunque a un nivel mínimo. Sin embargo, en 1973 se supo que la inestabilidad de la materia es inevitable en todo intento de fundir las fuerzas fuerte y nuclear débil en una teoría unificada. La gran unificación de las interacciones fundamentales confiere de forma natural el origen de la asimetría del universo.


Como curiosidad, he leído hace poco una noticia, sobre un fenómeno singular un extraño baile entre la materia y la antimateria:
Unas partículas subatómicas llamadas mesones Bs, que debieron existir en el Universo al principio y que se crean ahora en los aceleradores de partículas, se convierten espontáneamente en lo contrario de sí mismas, en antimateria, en antimesones Bs. A su vez los antimesones Bs, la antimateria, se convierten otra vez en mesones Bs. Un equipo de 700 físicos del acelerador de partículas Tevatron (de Fermilab, en Chicago) ha medido ahora con alta precisión que esa transición de una partícula en su antipartícula se produce 2,8 billones de veces por segundo, con un error del 2%. "Si lo ves como una de danza de materia y antimateria, nosotros hemos medido el increíblemente rápido tempo de esa danza", dice Jacobo Konigsberg, uno de los jefes del equipo. Una decena de físicos españoles, del Instituto de Física de Cantabria (IFCA), ha desempeñado un papel destacado en el experimento (El País, 2006).


Esta extraña danza del mesón Bs ya se conocía, pero ahora se ha medido con una asombrosa precisión que nos ayuda a conocer mejor la misteriosa y trascendente relación entre la materia y la antimateria.

Libro
: "Interacciones. Una visión del mundo desde el encanto de los átomos", de Sheldon L Glashow. Metatemas: Libros para pensar la ciencia, de Tusquets editores. Barcelona 1994.

Sheldon L Glashow recibió el premio Nobel de Física de 1979, junto con Abdus Salam y Steve Weinberg, por sus "trabajos sobre la teoría de la interacción unificada débil y electromagnética entre las partículas elementales, comprendida la predicción de la corriente nuetra débil".

Nota sobre las figuras:En el laboratorio SLAC de California, el grupo BaBar estudia el origen de la asimetría materia/antimateria. En el colionador asimétrico PEPII chocan haces electrón-positrón que producen el mesón neutro B. Se estás estudiando cierta asimetría en su decaimiento.