El mecanismo de Higgs: la creación de la masa en el Universo.
“Los dioses crearon al mundo con alguna imperfección simétrica. Esto, con el objetivo de que los humanos no sintieran envidia de sus poderes”. Richard Feynmann (Premio Nobel de Física)
Conforme nos acercamos a comprender el mismo instante del Big Bang, crece nuestra excitación, nos da la sensación de que casi parece que tocamos el momento de la creación. Ese sentimiento es el que debe haber experimentado la persona que bautizó a la partícula llamada bosón de Higgs como partícula Dios, por ser la partícula cuántica asociada a un campo escalar llamado de Higgs, capaz de conferir masa al resto de las partículas y a la propia (podría haber recibido también el nombre de otros colegas como Brout, Engler o Kibble, como reconoce el propio Peter Ware Higgs).
En un estado inicial unificado y simétrico (las cuatro fuerzas constituían una sola fuerza unificada y simétrica) existirían unos campos asociados con partículas de interacción sin masa. La idea fundamental del mecanismo de Higgs consiste en introducir un nuevo campo escalar que ofrece la propiedad de no anularse en el vacío, pues anularlo costaría energía. El estado inicial simétrico sería similar a lo que ocurre en la figura, la base de una botella de vino. Si situamos en el punto superior de la base una bolita, nos encontraremos con una situación perfectamente simétrica pero inestable (campos sin masa). De forma espontánea, esta simetría tenderá a romperse en dirección de una situación final no simétrica pero con menor energía potencial, la bolita descansará en la parte más baja de la base (campos con partículas asociadas con masa).
Una simetría puede ser perfecta en el plano de las ecuaciones y resultar rota en el plano de las soluciones. Como decía Weinberg: «Aunque una teoría postule un alto grado de simetría, no es necesario que los estados de las partículas muestren la simetría. Nada me parece tan halagüeño en física como la idea de que una teoría puede tener un alto grado de simetría que se nos oculta en la vida ordinaria».
La teoría que unifica las interacciones electromagnéticas y débil se debe a Glashow, Salam y Weinberg que obtuvieron por ella el Premio Nobel de física de 1979. La dificultad esencial de esta teoría es que los bosones del estado inicial simétrico debían ser de masa nula (masa nula de los bosones de interacción origina una fuerza a gran distancia), mientras que se necesitan bosones intermedios (partículas que originan la fuerza) muy masivos para justificar la interacción débil (corto alcance) . El mecanismo de Higgs, permite resolver esa dificultad, mediante la ruptura espontánea de simetría hace masivos los bosones W y Z (interacción débil) y mantiene nula la masa del fotón (interacción electromagnética).
En la física de estado sólido encontramos algunos mecanismos similares. Cuando un metal se encuentra sometido a un campo magnético, y se le enfría hasta convertirlo en superconductor, las líneas del campo son expulsadas brutalmente del superconductor, por la formación de un campo escalar formado por pares de electrones (dos fermiones de espín ½ , o pares de Cooper) que constituyen bosones de espin 0. El campo magnético penetra en el semiconductor en una capa muy fina. El espesor de ésta corresponde a un alcance efectivo del campo magnético que se comporta así como un campo masivo. En las interacciones débiles, el vacío representa el papel del semiconductor, el campo de Higgs, el papel del campo de los pares de Cooper, y el campo de interacción débil, el campo magnético.
Recientemente, científicos del LHC (Large Hadron Collider) han anunciado el descubrimiento de una partícula que tiene todos los visos de ser el boson de Higgs. Si es así significará un antes y un después en el conocimiento más íntimo de la materia. En la figura se observa el electroimán superconductor más grande que existe, el ATLAS. Forma parte del LHC, en el laboratorio internacional de física de alta energía CERN en Ginebra.
Reedición de un antiguo post sobre el tema. Felices vacaciones, amigos.