2009/01/15

Cantor, el infinito y más allá

Mi hija Alba cuando tenía cinco años me sorprendía con afirmaciones, aparentemente trascendentes, sobre el infinito y algunas otras cuestiones peliagudas. Recuerdo que un día me dejó perplejo al soltarme a bocajarro: " Papá, el infinito nunca para, siempre se está haciendo". No sé cómo llegó a esa conclusión ni en base a qué, pero en su mente infantil parecía una evidencia pura e incontestable. Después las matemáticas no han sido, precisamente, su fuerte pero aquellas afirmaciones parecían relacionadas con las cuestiones sobre la vida, la muerte o el mundo que parecen preocupar en un momento determinado de la primera infancia a muchos niños. El post sobre los números primos, su infinitud y su "misteriosa" distribución me hizo reflexionar sobre algunos aspectos del infinito que me han hecho recordar esta anécdota y publicar este post.


En la Grecia antigua Platón, Pitágoras y Aristóles entre otros, se planteaban la existencia del infinito y las contradicciones generadas a partir de la aceptación de su existencia. Aristóteles rechazó la idea del infinito dada las contradicciones que generaba. Sin embargo, lo concibió de dos formas diferentes las cuales son las nociones que tenemos actualmente de este concepto: el infinito potencial y el infinito actual. La noción de infinito potencial se centra en la operación reiterativa e ilimitada, es decir, en la recursividad interminable, por muy grande que sea un número natural, siempre podemos concebir uno mayor, y uno mayor que este y así sucesivamente donde esta última expresión "así sucesivamente'' encierra la misma idea de reiteración ilimitada, al infinito. Por otra parte, el infinito actual se refiere al un infinito existente como un todo o unidad y no como un proceso. Kant aceptaba la posición de Aristoteles y rechazaba el infinito actual por ser imposible de ser alcanzado por la experiencia.

Georg Cantor:
El gran matemático alemán Georg Cantor dedicó gran parte de su vida al estudio del infinito, los distintos infinitos y el llamado continuo, y en el siglo XIX desarrolló la teoría de conjuntos intimamente relacionada con la teoría de números transfinitos. Cantor fundamentó una axiomática consistente que permite construir los conjuntos y posteriormente establecer el concepto de infinito. Para esto definió el concepto de "cardinalidad'' o "potencia'' de un conjunto.Dos conjuntos se dicen que tienen el mismo número de elementos, que tienen la misma cardinalidad o son equipotentes, si existe una función definida entre ellos de forma que a cada elemento de uno sólo le corresponde otro elemento del otro conjunto, y viceversa.



A partir de esta definición se puede establecer la idea de conjunto infinito. Se dice que un conjunto es infinito si existe un subconjunto con la misma cardinalidad o que es equipotente con él. Esta definición plantea una contradicción con la intuición, pues todo subconjunto como parte del conjunto total parece que deba tener menos elementos. Eso es así, efectivamente, en los conjuntos finitos, pero no en los infinitos como podemos observar con un ejemplo sencillo dentro del conjunto de los números naturales. Supongamos que al número natural 100.000.001 le hacemos corresponder el número 1, al 100.000.002 el 2, al 100.000.003 el 3 y así establecemos una correspondencia número a número tan extensa como queramos. Vemos que a cada elemento del subconjunto de números naturales que comienzan con el 100.000.001 le hacemos corresponder un número, y sólo un número del conjunto total de los números naturales, y viceversa.

Cantor se dio cuenta de que existen diferentes grados de infinitud comparando los infinitos de los números naturales N {1,2,3,...n}, racionales Q (fracciones) y reales R(racionales + irracionales). Al cardinal infinito del conjunto de los números naturales le asignó el número llamado Aleph-0 y vio que era del mismo orden que el correspondiente a los números racionales, aunque estos son mucho más densos en la recta. Pero en el caso de los números reales su cardinal transfinito es de mayor orden pues su conjunto no es numerable (no se pueden poner en correspondencia, uno a uno, con los números naturales). A este cardinal le asignó el nombre de Aleph-1 y se supone que R es capaz de llenar la recta por completo, si se admite la hipótesis del continuo (a diferencia de lo que ocurre con los números racionales, los enteros o los naturales).

El descubrimiento de la existencia de cardinales transfinitos supuso un desafío para un espíritu tan religioso como el de Georg Cantor. Y las acusaciones de blasfemia por parte de ciertos colegas envidiosos o que no entendían su trabajo no le ayudaron. Sufrió de depresión, y fue internado repetidas veces en hospitales psiquiátricos. Su mente luchaba contra varias paradojas de la teoría de los conjuntos, que parecían invalidar toda su teoría (hacerla inconsistente o contradictoria, en el sentido de que una cierta propiedad podría ser a la vez cierta y falsa). Trató durante muchos años de probar la hipótesis del continuo, lo que se sabe hoy que es imposible, y que tiene que ser aceptada (o rehusada) como axioma adicional de la teoría, como ocurre con el llamado quinto postulado euclidiano sobre las rectas paralelas. Si se admite tenemos una geometría plana consistente, y si no se admite tenemos nuevas geometrías no planas también consistentes.

Cantor al desarrollar la que él mismo bautizó "aritmética de los números transfinitos", dotó de contenido matemático al concepto de infinito actual. Y al hacerlo así puso los cimientos de la teoría de conjuntos abstractos, contribuyendo además, de forma importante, a fundamentar el cálculo diferencial y el continuo de los números reales. El más notable logro de Cantor consistió en demostrar, con rigor matemático, que la de infinito no era una noción indiferenciada. Sus resultados fueron tan chocantes a la intuición de sus contemporáneos, que el eminente matemático francés Henri Poincaré condenó la teoría de números transfinitos como una "enfermedad", de la que algún día llegarían las matemáticas a curarse.Y Leopold Kronecker, que fue uno de los maestros de Cantor, y miembro preeminente de la matemática institucional alemana, llegó incluso a atacarle directa y personalmente, calificándolo de "charlatán científico", " renegado" y "corruptor de la juventud".

Empezó a interpretar e identificar el infinito absoluto (que no es concebible por la mente humana) con Dios, y escribió artículos religiosos sobre el tema. Murió en una clínica psiquiátrica, aquejado de una enfermedad maníaco-depresiva.Hoy en día, la comunidad matemática reconoce plenamente su trabajo, y admite que significó un salto cualitativo importante en el raciocinio lógico.

Reflexiones:
Lo infinitamente pequeño o lo infinitamente grande, las iteraciones hasta el infinito en límites continuos o en fractales parecen conceptos ajenos a lo cotidiano, pero no es así. En las funciones continuas el cálculo infinitesimal (lo infinitamente pequeño) es una herramienta imprescindible para la ciencia y la tecnología, con ella parece que casi conseguimos tocar el propio infinito. Recuerdo la fascinación que consiguieron ejercer sobre mi mente adolescente los límites infinitos y las sumas infinitas de funciones que se aproximan a una función dada (series de Taylor), así como los cálculos de máximos y mínimos aplicados a cosas cotidianas (como el cálculo del mínimo material con el que construir un cazo de un litro de capacidad). Cuando todos estos cálculos lograban materializarse en algo concreto parecía pura magia.

Toda la revolución cuántica se basa en el cuanto de acción, la mínima acción no puede ser infinitamente pequeña o cero, como suponía la física clásica, y de esa propiedad básica emerge el mundo cuántico y toda su "magia". Por otra parte, se creía infinita la velocidad de la luz, pero de su finitud y de la constatación de que es una magnitud constante, independientemente del sistema de referencia, se ha llegado a la más bella teoría física creada por el hombre: la teoría de la relatividad. En estas dos teorías, en su necesaria conjunción descansa la esperanza de poder desentrañar los secretos más intimos de la materia y del espacio-tiempo.

Para consultar:
-Revista Mundo de las Matemáticas del Instituto Tecnológico de Costa Rica.
-"Dios creó los números, los descubrimientos matemáticos que cambiaron la historia" de Stephen Hawking. Una biografía de los 17 mayores genios matemáticos (entre ellos Cantor) Ed. Crítica. ISBN:978-84-8432-753-0
-Muy interesante y completo, desde varios puntos de vista, el tomo 23 de la Revista Investigación y ciencia (año 2001):"Ideas del infinito".
-Estupenda web (de prueba) de Geocites sobre Cantor y los números transfinitos, por Joseph W. Dauben, de su libro:"George Cantor, Su Filosofía de la matemática y el Infinito" (Cambridge, Mass.: Harvard University Press, 1979; rep. Princeton, NJ: Princeton University Press, 1989).

2009/01/07

El último experimento, científicos ante la muerte


Hace unas semanas leí el libro " El arco iris de Feynman" de Leonard Mlodinow, el autor junto con Stephen Hawking de "Una brevísima historia del mundo". En el libro Mlodinow describe su relación con Feynman durante su primer año en el California Institute of Technology, el lugar de trabajo de aquel físico genial. Con su doctorado bajo el brazo, inseguro e intimidado en un centro tan distinguido y competitivo, Mlodinow encontró en Feynman algo más que un colega experimentado: descubrió un hombre sin prejucicios que atesoraba un maravilloso universo de experiencias e ideas, muchas de las cuales compartió con él precisamente durante los últimos meses de vida de aquel gran genio.

Feynman, aquejado por un tumor terminal se refería a la muerte como "el último experimento". Para una persona que vivía tan intensamente la ciencia toda su vida parecía ser un gran y complejo experimento y la muerte el final y la última etapa de ese experimento. Hace ya un par de años escribí sobre el mismo tema con relación al científico, poeta y ensayista en lengua catalana/valenciana, fallecido en 2005 , Dr. Alfred Giner-Sorolla. Sólo un verdadero investigador podría decir lo que decía él sobre la muerte, que es el último experimento.Un dramaturgo diría, con el mismo sentimiento, que es el fin del último acto.

Se retiró oficialmente en la década de 1990, y se instaló en su tierra valenciana, junto al mar que tanto quería. Pero un científico nunca deja de investigar. En el laboratorio que investigó en sus últimos años era el laboratorio de la vida. En él, ciertamente no podía aplicar el método científico y la mayoría de experimentos son irrepetibles, pero la ciencia también avanza por la observación y él era un gran observador de la realidad. En su libro de ensayo La sombra y los sueños (1993), escribía: "Una cierta curiosidad se mezcla con la angustia y la aprensión, el miedo de perecer. Para el filósofo y el científico constituye[...] una necesidad y un anhelo de explicación que sólo se puede dilucidar en el acto mismo. Es el último experimento que efectúa el hombre de ciencia que se ha pasado la vida haciendo muchos otros." Feynman, después de una intensa vida personal y profesional dominada por su pasión por la ciencia pensaba de la misma manera.

Randy Pausch fue un profesor de informática, de interacción hombre-máquina y de diseño en la Universidad Carnegie Mellon (CMU) en Pittsburgh, Pensilvania, Estados Unidos. En agosto del 2006, a Pausch se le diagnosticó un cáncer de páncreas.El 18 de septiembre de 2007 el profesor Pausch pronunció una conferencia titulada: "Alcanzar realmente tus sueños de la infancia". Se trata de una de las llamadas "últimas conferencias", en las que se propone al ponente que exponga su testamento intelectual. Para Pausch, se trataba, literalmente, de su última conferencia, puesto que los médicos habían confirmado que su cáncer era incurable.El coraje de Pausch y sus reflexiones han convertido el vídeo de la conferencia, disponible en YouTube, en un fenómeno de masas, pues ya ha sido visto por millones de personas.También disponible una versión completa con subtítulos en español y en forma de libro.


A Steve Jobs, co-fundador de Apple junto con Steve Wozniak, también se le diagnosticó un cáncer de páncreas, que se pensaba sería fatal, pero consiguió superarlo.Es conocido también su discurso en la ceremonia de graduación, de junio de 2005, de la Universidad de Stanford. Una pequeña parte del mismo:" A veces la vida te pega en la cabeza con un ladrillo. No pierdas la fé. Estoy convencido que lo único que me mantuvo en pie era el hecho que amo hacer lo que hago. Tienes que encontrar eso que amas; esto aplica en tu trabajo como en tus relaciones amorosas. Una gran parte de tu vida estará enfocada en tu trabajo y la única manera de sentirte realmente satisfecho es creer que lo que haces es un excelente trabajo. La única manera de lograr un excelente trabajo es amando lo que haces. Si no lo encuentras todavía sigue buscando. No te rindas. Como todas las cosas relacionadas con el corazón, sabrás exactamente cuando lo encuentres. Y, como en cualquier gran relación se va poniendo mejor y mejor a medida que el tiempo pasa. Así que sigue buscándolo hasta que lo encuentres, no te rindas. ..[..]."

Richard Feynman consiguió darle, también, una última lección a Leonard Mlodinow sobre cuál es la naturaleza de la ciencia, qué es la creatividad, el amor, la matemática, la felicidad, el arte, Dios, además de su visión sobre las últimas teorías físicas. Ya en el plano personal, mi padre e inspirador de este post me está dando una última lección sobre la alegría de vivir y el buen humor, cuando ya parece que no puede quedar ni esperanza ni alegría ni buen humor. Lo que me recuerda las palabras de un gran sabio sobre la vida " Vívela como tu mejor representación en el gran teatro, nunca una farsa, sabiendo que el público es un ser poderoso y extremadamente benevolente".