2014/05/31

Lisofractales, "lisos" por fuera y rugosos por dentro (1)


Imaginemos una línea fractal tan irregular e intrincada que fuera capaz de llenar el propio espacio tridimensional. Esta línea tendría una dimensión fractal de valor 3, porque es capaz de recubrir un espacio de dimensión 3 mientras su dimensión topológica es de sólo 1. Dado que la dimensión fractal es igual a la dimensión topológica más un coeficiente dimensional, en este caso dicho coeficiente sería nada menos que 2. En los fractales más “lisos” y regulares la dimensión fractal es mayor que su dimensión topológica (como ocurre con todo fractal) pero la diferencia entre ambas debe ser mucho menor que el 10% ¡ En el caso de la línea fractal que nos ocupa es del 200 %!

Recreación Fractal  Artística 1: Navegando con Ulises Blogspot.com

Las líneas fractales continuas tienen una dependencia muy determinada con la distancia. En el caso de la línea fractal de dimensión 3 la distancia que la aleja de cualquier punto arbitrario es del orden de la raíz cúbica del espacio total recorrido desde que pasó por dicho punto. En el movimiento browniano que tiene dimensión 2, la distancia efectiva a cualquier punto arbitrario es la raíz cuadrada  de la distancia total recorrida. En general la distancia total recorrida es la distancia efectiva elevada a la potencia d, siendo ésta la dimensión fractal de la línea.


Esta dependencia de las líneas fractales con la distancia se puede extender a superficies o a espacios con dimensión topológica mayor de una forma sencilla, siempre que las propiedades del fractal sean lo más isótropas posibles. Para ello dividimos la dimensión fractal del objeto a estudiar por su dimensión topológica y al resultado lo llamaremos dimensión fractal relativa. En cierta forma convertimos al fractal estudiado en una línea fractal, aunque lógicamente la trasformación no conserva las propiedades direccionales o anisótropas del fractal original.

Recreación Fractal Artística 2: Luisamr.blogspot.com

Los fractales que he llamado lisofractales exhiben sus curiosas propiedades en espacios en donde algunas de sus dimensiones son despreciables respecto a las otras. Puede haber recintos espaciales de N dimensiones en donde algunas de esas dimensiones queden reducidas a su mínima expresión: de hecho, entonces, el número de dimensiones significativas será un número N1 menor que N.


Vamos a ver un sencillo cálculo sobre todo esto: Imaginemos un fractal con dimensión topológica y con un coeficiente dimensional e . Su dimensión fractal será:  d + e. Y su dimensión fractal relativa será:  (d + e)/d (Expresión A).
Ahora supongamos que restamos al número de dimensiones topológicas un valor igual a e de forma que d se convierte en d - e (nuevo valor de las dimensiones significativas). Entonces, el nuevo valor de la dimensión fractal relativa será ( sustituyendo d por d-e):
Nuevo valor de la dimensión fractal relativa = d /(d-e) Expresión B).     
Hay una diferencia significativa entre la (Expresión A) y la (Expresión B), la primera sólo puede ser positiva pero la segunda puede ser, también, negativa. De hecho nos interesa  la posibilidad de que su valor sea (-1). En ese caso: d /(d-e)= -1. Que se cumple para
el valor de las nuevas dimensiones significativas d igual a e/2

Esquema explicativo sobre Lisofractales: los puntos representan la magnitud del escalar que determina el fractal el fractal.
En los lisofractales la magnitud del escalar que determina el fractal depende de la distancia elevada a (-1), es decir dicha magnitud es muy considerable en las pequeñas distancias e insignificante en las distancias mayores: "Liso por fuera (a lo lejos) y rugoso por dentro (de cerca)". Hay que destacar que considerando la (Expresión A), es decir sin restar ninguna dimensión topológica, la dependencia del fractal con la distancia dependería de la distancia elevada a 3, que es el valor de la expresión para d igual a e/2


Se puede generalizar para diferentes valores de la (Expresión B), no sólo (-1) que es el caso estudiado. Para valores más negativos: (-2), (-3), (-4),….., etc, el lisofractal se alisa muchísimo más en las grandes distancias, dado que estamos hablando de números que son exponentes negativos de la distancia, sin embargo el valor de la (Expresión A)  sólo va pasando muy lentamente de 3, para (Expresión B= -1), hasta 2, para (Expresión B= - infinito).



Los lisofractales nos indican que un medio fractal, muy irregular e intrincado a ciertas distancias, puede ser observado a otras distancias mayores como un medio completamente diferente y con apariencia regular y liso. Pero no estamos hablando de observarlo a distancia desde un punto exterior a él, sino desde su interior. Las observaciones sobre su irregularidad, en su interior, para una distancia d son completamente diferentes para otra distancia  n veces d. Lo podemos observar más claramente en el dibujo esquemático de arriba.


Para terminar, y de forma ilustrativa, añadiré que el VACÍO CUÁNTICO  exhibe las propiedades de un LISOFRACTAL,desde un punto de vista puramente geométrico.


Nota (1): La palabra "liso" proviene de la raíz griega liz (lis): “que no presenta asperezas ni rugosidad”. La palabra "fractal" viene del latín fractus, que significa quebrado o fracturado.

2014/05/20

Notas varias, collage claroscuro tirando al negro

Algunas notas, casi al azar, sobre gravitación cuántica y agujeros negros

Sobre espacio-tiempo y paradigma holográfico:
Conforme avanza nuestro conocimiento sobre el universo aparecen más interrogantes, vuelven las eternas preguntas que se han hecho los filósofos de todos los tiempos, aunque la perspectiva ha cambiado sustancialmente. Los principios básicos que vislumbramos sobre la gravedad cuántica nos indican que el propio espacio-tiempo no es el fundamental, eterno e inmóvil referente que siempre hemos creído sino que emerge de una entidad fundamental discreta (no continua) y su propia geometría debe estar inextricablemente ligada a las relaciones causales entre sucesos.
Leer más...

.............................
Extraña luz de agujero negro:
Un agujero negro del que no salga nada (el caso clásico), ni presente al exterior ninguna manifestación cuando engulle materia con mucha entropía, sugiere una forma demasiado fácil de disminuir la entropía de la materia exterior al mismo. Conforme arrojáramos al agujero materia con gran entropía haríamos disminuir la entropía exterior. Serían agujeros por los que se “escaparía” el cumplimiento de la segunda ley de la termodinámica, la tendencia natural al aumento de entropía o desorden (ver nota final sobre la entropía). Desde el Bing Bang, una explosión en perfecto orden , la entropía total del Universo no ha dejado de crecer y así será hasta la llamada muerte térmica .


La extraña luz de los agujeros negros, bautizada como radiación de Hawking que fue quien la descubrió, devuelve desorden, entropía, a nuestro Universo que sigue degradándose sin remedio hasta su muerte final (la energía de la radiación calorífica es la energía más degradada). Sin esa tenue luz los agujeros negros engullirían, además de materia, desorden. El determinismo clásico los hace más negros pero menos reales… la realidad, por una vez, no es tan “negra” como la pintan.

Leer más...
..................

Dragones alados y agujeros negros:
Agujeros negros, agujeros de gusano, túneles en el espacio-tiempo, viajes en el tiempo, distorsión espacial y temporal, todos estos conceptos que parecen sacados de una novela de ciencia ficción, forman parte ya de la ciencia seria que se investiga en la actualidad, y no deja de ser una paradoja que la física, la ciencia más pura y dura, se ocupe de cuestiones, en otro tiempo, esotéricas. La materia a la que nos agarramos como lo más sólido, simple y real que tenemos se está convirtiendo, cada vez más, en algo lleno de misterio y complejidad. La física cuántica y la teoría de la relatividad general nos la presentan como algo siempre en movimiento que se confunde con el propio espacio y tiempo. Conforme tratamos de entender sus propias entrañas se nos aparece como formando una especie de entidad compleja que algún premio Nóbel no ha dudado en llamar: la materia-espacio-tiempo. Las extrañas criaturas que son los agujeros negros, con la curiosidad que han despertado entre los físicos, a comprender mejor el mundo que nos rodea. En cierta forma su negra belleza ha arrojado un rayo de luz sobre nuestro conocimiento del universo que nos cobija.



Leer más ...
......................

Antes del Big Bang, la espuma cuántica:

La mecánica cuántica nos prepara en cierta forma la mente para imaginar la creación del Universo a partir de una nada cuajada de fluctuaciones cuánticas pre-espaciotemporales. Ya en el Universo actual nos enseña que el vacío es un verdadero hervidero de creación y aniquilación de partículas virtuales que, a distancias del orden de Planck, se convierte en la llamada "espuma" cuántica del espacio-tiempo. En ella nada de lo que conocemos y nos es familiar cuenta pues entramos en los dominios de la desconocida, hasta ahora, gravedad cuántica.
Leer más ...

...................

Radiación de Hawking:
Conforme más sabemos de estas exóticas criaturas estelares, más nos sorprenden. Hemos descubierto que emiten radiación (llamada de Hawking) y no son tan negros como nos los pintaban; que el área de su horizonte de sucesos nos mide toda su entropía y nos delata la magnitud del desorden exterior que ha devorado, y que mueren en medio de un estallido de energía brutal. Parecía que nos lo querían esconder todo, y, sin embargo, nos cuentan cosas que sin ellos nunca habríamos sabido sobre el propio nacimiento del Universo y de su final, pues sus propiedades llevan años alumbrando la dirección que debemos tomar para descubrir la futura teoría de la gravedad cuántica: la llave del pasado y del futuro del Universo.

Leer más ...
................


Gravitación cuántica, distancia fundamental y teoría de cuerdas:
Una propiedad matemática tan elemental como es la no conmutatividad está en la base de lo que será la futura teoría de gravitación cuántica. Los retículos espaciales que sustituyen a las coordenadas no conmutan, es decir si X es el operador cuántico de la coordenada x e Y es el operador de la y, el producto XY es diferente al producto YX. Las coordenadas clásicas son simples números reales que por descontado son conmutables, pues da lo mismo multiplicar las coordenadas xy en ese orden o en el contrario yx. Esta diferencia tan abismal nos da una idea de la nueva complejidad necesaria para poder describir correctamente la realidad del espaciotiempo.

Leer más ...


Un abrazo amigos.