2015/02/01

El universo elegante



Según Einstein, la teoría de la relatividad general era demasiado hermosa para ser errónea. Mediante el principio de equivalencia extendió la sencilla simetría por la que las leyes de la física son idénticas para todos los observadores, en cualquier tiempo y lugar del universo, al caso en que dichos observadores se encuentran sujetos a movimientos acelerados. De Hecho, un observador con movimiento acelerado puede opinar que él, en realidad, está en reposo y la aceleración que experimenta es debida a un campo gravitatorio. Los efectos son completamente equivalentes.

En esa base tan simple y elegante descansa la teoría más bella y poderosa que tenemos sobre la gravedad. En cierta forma, la gravedad refuerza la simetría, garantiza que todos los puntos de vista de los observadores, todos los marcos de referencia posibles, tienen igual validez. Las fuerzas nuclear fuerte, débil y electromagnética también están conectadas con simetrías pero, en este caso son más abstractas que las asociadas a la gravedad, requieren de espacios más complejos y extendidos. Al igual que, en la relatividad general, la simetría entre todos los posibles puntos ventajosos de observación requiere la existencia de la fuerza gravitatoria, el resto de las fuerzas es necesaria para que el universo abarque simetrías especialesEstas simetrías, llamadas gauge, fueron desarrolladas primero por Hermann Weyl en la década de 1920 y por Chen_Ning Yang y Robert Mills en la década de 1950 y son la base del esfuerzo de los físicos en lograr la unificación de las cuatro fuerzas fundamentales.

Con el nacimiento de la teoría de cuerdas se logró un avance importantísimo, un principio de compatibilidad entre las dos grandes teorías actuales de la física, la relatividad general y la mecánica cuántica que parecían incompatibles. La presunción de que las partículas no eran puntuales sino el resultado de una cuerda vibrante, eliminaba los molestos infinitos asociados a los campos cercanos a las partículas puntuales, además introducía de forma natural a la partícula mensajera de la gravedad: el gravitón, una partícula de masa cero y spin 2, predicha por la relatividad general. La teoría de cuerdas resultaba ser una teoría cuántica y gravitatoria.

Desde los comienzos de la teoría de cuerdas, como una especie de entelequia matemática para explicar las interacciones entre los componentes de los hadrones (nucleones, como protón y neutrón), hasta su proliferación en cinco tipos diferentes de teorías y el nacimiento de la teoría M que las engloba, la aventura científica que supone ha cautivado a miles de científicos de todo el mundo. Involucra la física con las matemáticas más abstractas, que todavía no han sido descubiertas, y en esa intrincada andadura encontramos a un verdadero genio en ambas disciplinas: Edward Witten. En el camino se ha encontrado una extraña simetría llamada dualidad T, o de radio grande/radio pequeño, por la cual las propiedades físicas de cierto tipo de cuerda, en un universo dotado de una dimensión circular de radio R, son absolutamente idénticas a las propiedades físicas de otro tipo de cuerda en un universo dotado de una dimensión circular de radio 1/R. Las cinco teorías de cuerdas existentes, junto con la teoría M, se muestran duales entre si y unidas en un solo marco teórico.

Las once dimensiones espaciotemporales de la teoría M y la forma en que se enrollan las dimensiones ocultas en los espacios de Calabi-Yau nos indican que la unidad cosmológica de las fuerzas fundamentales se consigue más fácilmente utilizando el marco de la teoría M. Pero las cuerdas ya no están solas, la teoría M incluye otros objetos: membranas vibratorias bidimensionales, burbujas tridimensionales que se ondulan, llamadas tribranas, y además una gran cantidad de otros ingredientes diversos.

Esto y muchísimo más, lo encontraréis, magníficamente explicado, en el apasionante libro de Brian Green "EL UNIVERSO ELEGANTE. Supercuerdas, dimensiones ocultas y la búsqueda de una teoría final", de la Editorial Crítica.Barcelona. 2007.

Nota.- José Luis, un amable lector nos envía unos enlaces a videos explicativos, relacionados con el libro, y un par de post de su blog:

La teoría de cuerdas (1)
La teoría de cuerdas (2)

Documentales de El universo elegante:
Parte 1, El sueño de Einstein 
Parte 2, La clave está en la cuerda
Parte 3, Bienvenido a la 11ª dimensión

Reedición de una entrada clásica de este blog. Un saludo amigos.

2015/01/16

Caos que vino del orden: el efecto mariposa

En el siglo XVIII el gran filósofo, matemático y astrónomo Pierre Simon Laplace, en plena euforia por el éxito de las leyes newtonianas, suponía que con esas leyes en la mano y con lo datos necesarios: “Una inteligencia abarcaría en la misma fórmula los movimientos de los cuerpos más gigantescos del cosmos y los del átomo más imperceptible; para ella no habría nada incierto, y así el futuro como el pasado estarían ante sus ojos”. Isaac Asimov, muchos años después, en uno de sus ensayos sobre la incertidumbre, comparaba esa actitud con la del joven que es lo suficientemente inmaduro para creer que lo sabe todo. Con los años van desapareciendo muchas certidumbres y de la misma forma, a principios del siglo XX con la teoría de la relatividad de Einstein, con la física cuántica y la incertidumbre de Heisenberg, los viejos esquemas deterministas fueron cayendo y dejando tras de si un mundo menos seguro e intuitivo. Aún así, hasta mediados del siglo pasado todavía era una creencia general entre los científicos que dado un conocimiento aproximado de las condiciones iniciales, y, conociendo la ley natural, podía calcularse el comportamiento aproximado de un sistema.
Se creía que de la misma forma que los astrónomos consiguieron hacer sus previsiones sobre los movimientos de los astros, con el conocimiento de las leyes que se tenía sobre el tiempo atmosférico y la potencia de cálculo que iban a brindar los ordenadores se iba a poder prever, cada vez con mayor aproximación, el tiempo atmosférico. Se suponía que el problema que se planteaba era semejante, una cuestión de aproximaciones, que siendo cada vez mejores, conseguirían una mejor previsión a largo plazo. El optimismo irreal que caracterizó los años 1950 y 1960, en lo que a a la previción del tiempo atmosférico se refería, se vio truncado por un asombroso descubrimiento del meteorólogo y matemático Edward Lorenz.
Lorenz, como matemático que era, trató de extraer la esencia de lo que ocurría con el tiempo atmosférico y encontró unas sencillas y, aparentemente, anodinas ecuaciones diferenciales. No parecían tener nada de particular, pero al tratar de representarlas se dio cuenta, por casualidad, de que una diferencia mínima en los datos de entrada originaba que, al pasar el tiempo, el patrón representado variara de forma completamente diferente. Descubrió los sistemas muy sensibles a las condiciones iniciales: una pequeñísima variación en los datos de entrada originaba resultados completamente diferentes. Estudiando estos sistemas en un espacio abstracto llamado espacio de fases se descubrió que mientras los sistemas conocidos tendían a figuras concretas y sencillas como puntos o circunferencias, llamadas atractores, estos otros tendían a figuras de complejidad infinita que fueron bautizados con el nombre deatractores extraños. El primero de estos atractores es el atractor llamado la mariposa de Lorenz que aparece en la figura superior.
A partir de sistemas conocidos y regidos por ecuaciones en “completo orden” obtenemos unos sistemas que parecen llevar el caos en lo más profundo de su esencia. De forma exagerada, pero muy ilustrativa, Lorenz explicaba que los sistemas relacionados con el tiempo meteorológico eran tan sensibles a las condiciones inciales que el simple aletear de una mariposa, en un rincón de China, podría variar las condiciones climatológicas en Alabama. A partir de un orden establecido, se producen infinidad de realimentaciones en las que intervienen la convección del fluido caliente, su velocidad y la transferencia del calor entre diferentes capas del mismo. El orden lineal es sustituido por la no linealidad caótica y muy sensible a las más pequeñas variaciones.
El caos que vino del orden: el efecto mariposa, representado por el atractor de Lorenz, fue la primera criatura de un nuevo orden en el que el caos es un componente esencial. El comienzo de una nueva ciencia: la ciencia del caos.
LibroCAOS, la creación de una ciencia, de James Gleick. Una obra maestra de la divulgación de esta nueva ciencia que es el caos. Una ciencia de las cosas cotidianas: del arte y de la economía, de los ritmos biológicos y de los atascos de circulación, de las cascadas y del tiempo…

Reedición del post del mismo nombre de mi colaboración con Libro de notas (Ciencias y letras)

2014/12/30

La sorprendente energía del vacío



Geometría determinada por la energía del vacío

Las fluctuaciones de energía del vacío determinan la propia geometría del espacio. No son simples variaciones sobre un fondo fijo y estable, por lo que analizando su estructura podremos averiguar algo más sobre la referencia espaciotemporal que determinan. Por una parte son no diferenciables, hasta el punto de que son la causa directa de la desaparición del concepto clásico de trayectoria continua en el vacío. Por otra parte su estructura es auto semejante a cualquier escala:
Si tomamos cualquier distancia mayor que la distancia de Planck, por pequeña que sea (diámetro atómico, por ejemplo) y cualquier otra distancia de orden cósmico (diámetro de un cúmulo estelar), a una distancia doble le
corresponderá una energía del vacío mitad, y a una distancia mitad una energía del vacío doble (inverso de la distancia).
En base a estas simples propiedades consideraremos una hipótesis de trabajo:
que la estructura asociada a la energía del vacío de las fluctuaciones cuánticas es fractal  y trataremos de estudiar sus características.

Dimensión fractal

La característica más especial de los fractales es su dimensión. Siempre es positiva y superior a su dimensión topológica. En cierta manera, de forma intuitiva nos indica la dimensión del espacio que son capaces de ocupar. Una cuartilla es un ejemplo de objeto de dimensión topológica 2, pero si la arrugamos conseguimos que ocupe un espacio de mayor dimensión, entre 2 y 3 (normalmente fraccionario). Lo mismo ocurre con una línea (dimensión 1) que si la hacemos lo suficientemente intrincada e irregular es capaz de ocupar un plano (dimensión 2) e incluso un espacio (dimensión 3). Si la línea llega a ocupar el plano su dimensión fractal será 2 y si ocupa el espacio tridimensional, su dimensión fractal será 3. Conforme mayor sea su dimensión fractal, más intrincado e irregular será el fractal: a su dimensión topológica se le suma un coeficiente dimensional que completa el valor de su dimensión. Este coeficiente, normalmente fraccionario, nos indica el grado de irregularidad del fractal.

Dependencia espacial en los fractales   


La líneas fractales gozan de una característica notable con relación a su dependencia espacial: una línea fractal capaz de recubrir el plano, para alejarse de cualquier punto arbitrario una distancia efectiva L debe recorrer una distancia media L2. A otra línea fractal capaz de llenar el espacio le ocurre algo similar: para alejarse de cualquier punto arbitrario una distancia efectiva L, deberá recorrer, como media, una distancia total L3. Es decir, el valor de los exponentes 2 y 3 se corresponde con las dimensiones fractales de las líneas.
Sabiendo la dimensión del fractal podemos calcular su dependencia espacial y a la inversa. Lo que ocurre con las curvas fractales (dimensión topológica 1) lo podemos generalizar a cualquier estructura fractal continua (e isótropa) con mayor dimensión topológica, dividiendo su dimensión fractal por su dimensión topológica.
Reducimos así la dispersión de resultados y encontramos más fácilmente símiles con ejemplos sencillos como trayectorias unidimensionales. A este cociente le llamaremos dimensión fractal relativa:

Dim. frac. relativa = (dimens. topológica + coef. dimensional )/(dimens. topológica).

En nuestro caso conocemos que la energía asociada al vacío depende inversamente de la distancia (L-1). Si fuera una simple línea (dimensión 1) encontraríamos que su dimensión fractal sería -1, pero como la energía es una magnitud tridimensional su dimensión fractal será -3, lo que obedece a un coeficiente dimensional negativo e igual a -6.

Tanto la dimensión fractal como el coeficiente dimensional negativos son resultados anómalos que obedecen a una causa sorprendente que estudiaremos a continuación. Siempre en base a la hipótesis fractal de las fluctuaciones que hemos planteado.


2014/11/30

Camera obscura

Termino latino que significa “habitación oscura” y se refiere a la técnica que ofrece la posibilidad de hacer fotografías mediante los rayos de luz, sin lentes. Consiste en una sala cerrada cuya única fuente de luz es un pequeño orificio practicado en uno de los muros, por donde entran los rayos luminosos reflejando los objetos del exterior en una de sus paredes. El orificio funciona como una lente convergente y proyecta, en la pared opuesta, la imagen del exterior invertida tanto vertical como horizontalmente (Página web del fotógrafo Ilan Wolf).

La técnica era conocida ya por Aristóteles y Euclides, que habían observado el fenómeno que ocurría de forma natural al pasar la luz del Sol a través de una cesta o de entretejidos de hojas. Pero los antiguos griegos creían que nuestros ojos emitían rayos que nos permitían ver, y fue Alhazen (Ibn al-Haytham), matemático, astrónomo y físico iraquí del siglo X el que, en su tratado “Libro de óptica”, demostró que la luz entraba al ojo en lugar de salir de él. También inventó la primera cámara oscura después de notar cómo salía la luz de un agujero en las persianas. Mejoró la cámara al notar que cuanto más pequeño era el agujero más nítida era la imagen. Me recuerda lo que ocurría en mi cuarto los domingos por la mañana, cuando de niño me podía levantar más tarde de la cama. A través de unas rendijas de la ventana veía proyectarse, con bastante nitidez, el paso de las personas por la calle. Me interesé por el fenómeno y construí mi primera cámara oscura con una caja de cartón. La magia de lo sencillo y auténtico.


 Cámaras oscuras por todo el mundo :Al documentarme sobre la cámara oscura, me asombré al descubrir que en el siglo XIX proliferó la construcción o habilitación de edificaciones, que se comportaban como cámaras oscuras, como atracción lúdica e instructiva. En la actualidad existen en todo el mundo, desde Edimburgo o Cádiz, hasta La Habana o San Francisco .

La cámara oscura, también recibe el nombre de cámara estenopeica del griego steno estrecho y ope abertura, agujero. El artículo de la Wikipedia es muy interesante e instructivo porque se ven de forma muy clara las características de abertura, el tiempo de exposición y distancia focal. A partir de un instrumento tan sencillo se desarrollaron desde las más antiguas máquinas fotográficas hasta las modernas cámaras electrónicas. Curiosamente, en esta época que tanto se valora la tecnología, existe toda una nueva corriente en la fotografía artística que valora la autenticidad de la cámara oscura. Fotógrafos como Ilan Wolf y Gabriel Lacomba lideran un movimiento de vuelta a los orígenes
 que se vale de cualquier objeto cotidianopara construir una cámara estenopeica. Incluso existe un día mundial de la fotografía estenopeica que se celebra desde hace unos años, y reuniones periódicas de aficionados.
El viejo principio de la camera obscura (pinhole camera, en inglés) usado en una investigación puntera del Cosmos :La NASA ha iniciado la investigación del proyecto New Worlds Imager , que utilizará una cámara estenopeica con un diámetro de diez metros y una longitud focal de 200.000 km para buscar planetas del tamaño de la Tierra en otros sistemas solares. La figura es una recreación artística de la cámara: de abajo a arriba encontramos la nave colectora, la sombrilla estelar con la apertura y el sistema planetario en estudio con su estrella. Abajo a la izquierda la Tierra. Crédito de la imagen: Dr. W. Cash et al.
Eclipse de 2005 a través de las hojas de los árboles :Los árboles me han permitido ver el mejor espectáculo que podía darnos el eclipse de sol.

Su sombra brindaba, sin el menor peligro para la vista  , cientos de fotografías actualizadas al segundo del eclipse solar que se estaba produciendo.

Formaban cientos de cámaras oscuras naturales que permitían seguir el particular baile de los dos astros. (4/oct.2005: El País )
Documentación complementaria:
Historia de la cámara oscura (Torre Tavira, Cádiz)
Experiencias estenopeicas , Gabriel Lacomba
Proyecto New Worlds Imager , por la Universidad de Colorado.

Post (01/05/13) de mi colaboración con Libro de notas.

2014/10/12

La muerte del Universo

La entropía es un concepto sumamente interesante, y en cierta forma enigmático, ligado al grado de desorden de la materia y la energía de un sistema. El segundo principio de la termodinámica establece que en un sistema cerrado, tal como el propio Universo, sus parámetros característicos se desarrollarán de tal forma que tenderán a maximizarla, es decir, a llevar al sistema a un máximo desorden. Dado que la forma más degradada de energía es la energía térmica, en cualquier sistema cerrado, toda la energía tenderá a acabar de esa manera: en un estado de total equilibrio termodinámico y a una temperatura cercana al cero absoluto, que impedirán cualquier posibilidad de extracción de energía útil. Es la llamada “muerte térmica”, el estado de mayor desorden posible o de máxima entropía.
Nuestro Universo como sistema cerrado está sujeto a ese destino de forma irremediable. La entropía esta aumentando incesantemente en las estrellas tanto como en nuestro planeta. Esto significa que, con el tiempo, las estrellas agotarán su combustible nuclear y morirán, convirtiéndose en masas muertas de materia nuclear. El universo se oscurecerá a medida que las estrellas, una a una, dejen de centellear. Todas las estrellas se convertirán en agujeros negros, estrellas de neutrones o estrellas enanas frías, dependiendo de su masa.
Posteriormente, según las Teorías de Gran Unificación,toda la materia tal como la conocemos, nuestros cuerpos, la Tierra o el sistema solar se desintegrará en partículas más pequeñas tales como electrones y neutrinos.
Después de un periodo, prácticamente inimaginable en nuestra escala temporal, la temperatura del universo se acercará al cero absoluto, pero incluso en un universo desolado y frío, a temperaturas próximas al cero absoluto, existe una última fuente remanente de energía: los agujeros negros. Según Hawking, no son completamente negros, dejan escapar energía lentamente al exterior.Pero ¿y después, cuando los agujeros negros en evaporación hayan agotado la mayor parte de su energía?.
Para un universo según la física clásica la muerte es irremediable, pero para un universo mecanocuántico sujeto a escalas temporales tan formidables no se puede descartar ningún tipo de raro suceso cuántico-cósmico, capaz de trastocar el más triste de los destinos.
El Universo nació con el mínimo de entropía y el máximo orden. En cierta forma partía como un reloj con la máxima cuerda. Conforme avanzamos en el tiempo la cuerda se va acabando y va apareciendo más y más desorden hasta la muerte térmica. Como ejemplo nos valdría imaginar un enorme tubo lleno de monedas perfectamente ordenadas, una encima de otra. Así sería el nacimiento del Universo. Las dejamos caer sobre una gran mesa de forma que todavía tengamos bastantes montoncitos ordenados, por ejemplo, con la cara de las monedas hacia arriba, y la mayoría del resto de las monedas sueltas también con la cara conservando la misma orientación. Esa situación podría asemejarse al estado del Universo actual. Finalmente, si imaginamos el final, estarían todas las monedas sueltas sobre la mesa, sin formar ningún montón y con la orientación de la cara/cruz totalmente aleatoria: un completo desorden.
La probabilística mecánica cuántica no descarta que después de miles de millones, de millones… y millones de años, dando una “palmada a la mesa”, vuelvan a ordenarse nuevamente las monedas de forma “milagrosa”. Es lo que tiene la mecánica cuántica. Parafraseando a Humphrey Bogart, en Casablanca, podríamos decir que “siempre nos quedará la mecánica cuántica”.

Post de mi antigua columna "Ciencias y letras", en Libro de notas.

2014/09/21

Libertad cuántica

Hola amigos, en un tiempo en que una serie de pueblos, tradicionalmente oprimidos, tratan de despojarse de viejos sistemas autocráticos y despertar a la libertad, las partículas más elementales que forman toda la materia de nuestro universo nos dan una lección de su caracter indomable. La libertad, en cierta forma, está impresa más allá de nuestros genes en la esencia de la propia materia. Paso a reeditaros un antiguo post que habla de la "libertad cuántica". Un abrazo.



Las partículas elementales parecen poseer una cierta "libertad cuántica". Para ellas los sucesos no están estrictamente determinados, como lo fueron para las partículas en la física clásica del siglo XIX, y poseen un elemento de elección dentro de ciertos límites, siempre que en promedio obedecezcan las leyes clásicas. El cuanto de acción, h, les da esa libertad.

Tratemos de confinar un electrón dentro de un núcleo atómico. Después de todo ¿por qué no deben los electrones ser un componente de los núcleos como los protones y los neutrones? Los neutrones experimentan una desintegración radiactiva que los convierte en un protón y un electrón (radiación beta). Por tanto, un electrón atrapado por un protón para formar un neutrón parecería una idea razonable, pero el electrón rehúsa cooperar, se niega a ser confinado.

Un electrón confinado a un espacio de dimensiones nucleares debe tener longitudes de onda asociadas a él tan cortas, al menos, como el diámetro del núcleo. Si las ondas fueran mayores significaría que el electrón consume la mayor parte de su tiempo fuera del núcleo, y eso no funcionaría. Sin embargo, las longitudes de onda cortas implican una restricción en espacio, y ello debe estar equilibrado por un incremento del momento con objeto de conservar su cuanto de acción fundamental, h ( (incremento de espacio) x (incremento de momento) = cuanto de acción (h)) . El electrón tendría tanta energía cinética que saldría de su jaula nuclear. El encarcelamiento no puede realizarse. Los electrones no pueden existir dentro del núcleo en un estado estable, a menos que se ejerza una tremenda fuerza para vencer su empuje hacia la libertad.

Sólo una fuerza tan inmensa como la presión de una estrella que se desintegra bajo su propia gravedad puede apiñar electrones en núcleos para formar un cuerpo compuesto completamente por neutrones: la estrella de neutrones. Y ello es una medida gráfica de lo fuerte que es la urgencia de libertad del electrón. Necesita que un cuerpo del tamaño de una estrella se siente sobre él.

Cada vez que tratamos de restringir la libertad cuántica de un electrón, ya sea forzándolo a entrar en algún espacio o dirigiéndolo a través de hendiduras, éste insiste en su libertad de acción y la manifiesta de una forma característica, y no sólo de forma pasiva. Puede promover su libertad violando las leyes ( clásicas) de la conservación de la energía y el momento.


Del estupendo librito " Tiempo, espacio y cosas", de B.K. Ridley, título original "Time, space and things", publicado por Cambridge University Press. Traducción de 1989 del Fondo de Cultura Económica. Pura belleza al servicio de la divulgación científica.

Reciente teoría:

Puede que el comportamiento de las partículas cuánticas no sea tan extraño. Según una reciente teoría que conjuga nuestro conocimiento sobre fractales y agujeros negros, las partículas podrían ser comparadas con una serie de trenes moviéndose sobre una intrincada red fractal de vías. La aparente libertad que observamos en su movimiento se ciñe a ese entramado de vías que desconocemos. No podemos forzar cualquier movimiento arbitrario que permita que el “tren se salga de la vía”.
Ese entramado de vías se correspondería con el llamado conjunto invariante del universo, un mínimo de información subyacente que engloba el número total de estados posibles en el mismo. La supuesta libertad del electrón se ceñiría a seguir ese conjunto mínimo de información que determina, aunque no lo veamos, sus movimientos. (Ciencia Kanija).

2014/08/04

Leyes del caos, vida e inteligencia


La ciencia del caos, curiosamente, ha hecho una aportación trascendental para mejorar nuestra comprensión del mundo. Hasta ahora se creía que la vida y con ella la inteligencia eran puras casualidades pero ahora sabemos que la materia, ciega en el equilibrio, manifiesta potencialidades imposibles en otras condiciones alejadas del mismo siempre que haya la necesaria aportación de energía. Con las leyes que rigen nuestro no hubo más que esperar el tiempo necesario para que las estrellas crearan los átomos imprescindibles para la vida y ésta progresara, a través de organismos cada vez más sofisticados y adaptados al ambiente de forma más eficiente, permitiendo que apareciese la inteligencia en especies evolucionadas como la nuestra.


Si la vida y la inteligencia vienen impresas en las propias leyes que nos rigen la posibilidad de vida e inteligencia extraterrestres están aseguradas.Ilya Prigogine, recibió el premio Nobel de Química en el año 1977 por su aporte al conocimiento de las "estructuras disipativas" en el mundo físico, es decir, el estudio de la aparición del orden en condiciones alejadas del equilibrio. El término estructura disipativa busca representar la asociación de las ideas de orden y disipación. El nuevo hecho fundamental es que la disipación de energía y de materia, que suele asociarse a la noción de pérdida y evolución hacia el desorden, se convierte, lejos del equilibrio, en fuente de orden. Estas estructuras están en la base de la vida y en ellas el orden se establece en base a ecuaciones de evolución no lineal, de mucha mayor complejidad que cerca del equilibrio en donde las soluciones son mucho más simples y se pueden linealizar.

Potencialidad:
Lejos del equilibrio existen muchas soluciones, potencialidades que no existen cerca del equilibrio. Esta riqueza nos puede guiar mucho mejor para comprender fenómenos complejos como la historia del clima, de la Tierra y de la propia vida. Todo esto está ligado a una estructura de no equilibrio que era incomprensible desde una perspectiva antigua: el no equilibrio no es sólo degradación, sino también construcción. Ni el tiempo repetitivo de la mecánica ni el tiempo-degradación de la termodinámica clásica pueden explicar la riqueza del mundo tal como lo vemos. La naturaleza inventa. Nada es reversible. Y su dimensión temporal dista de agotarse en la concepción matemática de un tiempo absoluto, como la concepción abstracta de la mecánica clásica. En los sistemas sencillos no caóticos su atractor, una especie de representación de sus variables dinámicas, es una figura geométrica simple o un punto, mientras que en los caóticos son figuras de una complejidad extraordinaria llamados atractores extraños. De esa complejidad se pueden extraer infinitas posibilidades para la evolución futura del sistema.


Los mecanismos de organización en las estructuras disipativas sólo pueden aparecer cuando el medio externo mantiene, mediante la aportación energética, el sistema alejado del equilibrio. La estructura es creada y mantenida gracias al intercambio de energía con el exterior. Por eso las llamamos estructuras disipativas. En ciertas condiciones críticas externas, las ínfimas fluctuaciones naturales y constantes de un sistema pueden, en vez de atenuarse, amplificarse y arrastrar el sistema en una u otra dirección. La rama de la bifurcación que escogerá el sistema es imprevisible, pues el fenómeno es aleatorio y parece fruto del azar.

La segunda ley, orden y desorden:
En un sistema aislado, la segunda ley de la termodinámica nos enseña que el desorden, la entropía, aumenta irremediablemente, pero eso no impide que una parte de ese sistema con una aportación de energía y materia de su entorno aumente su orden y disminuya su entropía. La suma total de entropía sigue aumentando, pero esa parte del sistema se organiza a costa de aumentar el desorden a su alrededor. Esa es la historia esencial de los organismos vivos. Cuando las condiciones externas cambian y se vuelven extremas el organismo entra en crisis y aparecen fenómenos aleatorios de bifurcación que le dan opciones de supervivencia. El sistema elige una de las opciones que se adaptará mejor o peor a las nuevas condiciones. Si elige bien vuelve a encontrar un periodo de estabilidad regido por el orden, si vuelve a entrar en crisis volverá el desorden y la nueva elección.

Hasta Prigogine, la ciencia pensaba que la vida era una especie de casualidad, un raro fenómeno difícil de reproducir, pero con Prigogine hemos aprendido que la materia lejos del equilibrio manifiesta potencialidades imposibles en otras condiciones. La intuición de que era posible elaborar una termodinámica general de sistemas vivos o abiertos y de sistemas cerrados, aislados e inertes, le valio a Ilya Prigogine el Premio Nobel de Química.

Algo más sobre el caos:


Historia, dignidad y efecto mariposa.

Efecto mariposa, un atráctor extraño.


Reedición del post de fecha 17/12/2010. ¡¡¡Feliz verano amigos!!!