2009/12/31

Historia, dignidad y efecto mariposa

Estamos atravesando una grave crisis mundial de la que nadie está seguro cómo saldremos. Se analizan cifras macroeconómicas y se diseñan planes para estabilizar el sistema, pero nada funcionará si no se tiene en cuenta el principal factor que subyace en toda crisis de un sistema: el factor humano, un factor a la vez estabilizante y desestabilizador.

Lo asombroso de la historia
Hay algo asombroso que siempre me ha llamado la atención sobre la historia. Ocurrió antes, ocurre ahora y, posiblemente, pasará siempre : la humanidad no parece saber, ni poder controlar realmente, hacia dónde va. Los acontecimientos se suceden y cuando todo parece amarrado y en su sitio, viene un nuevo incidente que lo desbarata todo, guerras, revoluciones, crisis económicas o cualquier otra catástrofe. Ante estas situaciones la historia, después de ocurridas, saca sus conclusiones y nos ayuda a impedir que vuelvan a repetirse, pero siempre hay algo que se nos escapa y todo vuelve a derivar en alguna nueva catástrofe, todo vuelve a empezar de nuevo.

Efecto mariposa
En física existen unos sistemas que son sumamente sensibles a las condiciones iniciales. Por muy bien que se conozcan las variables que van a influir en su desarrollo, por muy sofisticados que lleguen a ser los instrumentos que las midan, siempre habrá una mínima incertidumbre que influirá, decisívamente, en el desarrollo posterior del sistema. Una mínima causa será capaz de desencadenar grandes consecuencias. Ese efecto es conocido, popularmente, con el nombre de “efecto de la mariposa”. De forma exagerada, pero muy gráfica, se explica que el simple vuelo de una mariposa, en África, puede desencadenar, con el tiempo, un huracán en China. El primero de esos sistemas que se estudió, allá por los años sesenta, fue el tiempo metereológico.

Efecto mariposa e historia
Desde el primer momento, en que tuve conocimiento de este curioso tipo de sistemas físicos, me recordó al propio devenir de la historia. Conocemos miles de pequeñas anécdotas que influyeron, decisivamente, en el posterior desarrollo de acontecimientos sumamente importantes. Cualquiera de esas minúsculas causas, al desarrollarse de modo distinto, habría cambiado el destino de cualquier país o del mundo. La historia ha transcurrido, durante miles de años, cuajada de millones de acontecimientos de mayor o menor significado, entrelazados de forma aleatoria o no. En muchos sentidos, podría ser considerada como un sistema “muy sensible a las condiciones iniciales”, un sistema no lineal y con infinidad de realimentaciones. Afortunadamente, los manipuladores que intentan, e intentarán, cambiar el destino de las naciones, difícilmente, podrán tener en cuenta todas las variables necesarias para conseguir su propósito. A muy corto plazo puede que sus cálculos sean correctos, pero a medio y largo plazo se equivocarán. Los pequeños errores de cálculo, conforme se desarrollan los acontecimientos, van teniendo mayor influencia en los resultados hasta llegar a desfigurarlos. Las actuaciones bienintencionadas se toparán, en principio, con los mismos inconvenientes ante el efecto multiplicador de los pequeños errores de cálculo sobre el sistema. Más ahora, que el efecto de la globalización trasforma al mundo en un sistema más sensible e inestable.

¿ Dignidad y estabilidad?
Aparte del factor puramente “físico”, de la incertidumbre, hay un elemento capital, en el desarrollo histórico, que el manipulador tiende a olvidar y que se alía con el “efecto de la mariposa” para desbaratar sus planes. Puede parecer poco científico, incluso irreal, pero, lejos de eso, obedece a una realidad constatable y sólida, y es un elemento esencial del factor humano: la dignidad humana. No actúa como motor de la historia sino más bien como “encauzador” del verdadero motor. Éste, por cierto, no es ajeno al egoísmo en sus más diversas formas, perversas en mayor o menor medida.


El poder egoísta tiende a pisarlo todo, sin ningún tipo de consideración. Es un elemento motriz burdo, como una tormenta. Pero a diferencia de la tormenta que actúa sin cortapisas, obedeciendo a leyes físicas y a condicionamientos puramente mecánicos, el poder siempre tiene enfrente a la dignidad de la persona. La pisará una y mil veces, la despreciará, pero al final la encontrará cara a cara, haciéndole frente, en el germen de toda revolución o cambio necesario. Y será capaz de reconducir la propia corriente de la historia. Esa es la diferencia entre los sistemas físicos, caóticos en el sentido en que pueden seguir muy distintas trayectorias de futuro, igualmente válidas, y el “sistema sensible” de la historia cuya única trayectoria final estable, después de cualquier cambio caótico, pasa por el respeto a la dignidad humana. El sentimiento que hace sentirnos únicos, diferentes, con un valor intrínseco, como centro que somos del mundo que percibimos, de nuestro mundo. Es un sentimiento universal y nace de la propia conciencia de ser.

Todos los amantes de la física y de la justicia podemos congratularnos de que un efecto físico “amigo” sea aliado de la justicia social contra los cálculos egoístas del poder. Esos cálculos, organizados por el más potente de los ordenadores que pueda existir en el futuro, son incapaces de recoger toda la información, potencialmente necesaria e influyente, en sus más pequeños detalles. Un simple vuelo, no previsto, no calculado, de una insignificante mariposa podrá desbaratar los planes más perfectos y meditados. Ese simple vuelo será también capaz de desbaratar los planes bienintencionados que traten de controlar cualquier crisis si no cuentan con el factor de estabilización que introduce, en infinidad de puntos inestables, el respeto a la dignidad personal.

Post sacado de mi colaboración con Libro de notas, Ciencias y letras.

¡¡¡FELIZ AÑO AMIGOS!!!

2009/12/17

El infinito y más allá, los números transfinitos Aleph

A finales del siglo XIX el original matemático Georg Cantor propuso una bella teoría sobre los números finitos o transfinitos, según la cual el número total de fracciones, números enteros y números naturales son el mismo número transfinito al que llamó Aleph sub-cero.

A primera vista no parece algo razonable, pues se podría pensar que el número de enteros es mayor que el número de naturales, ya que todo número natural es un entero mientras que algunos enteros (los negativos) no son números naturales. De forma similar se podría pensar, también, que el número de fracciones es mayor que el de enteros, pero una cosa es lo que parece y otra lo que es.


La clave está en las extrañas propiedades de los números infinitos y las relaciones que se pueden establecer entre ellos. Para objetos finitos de dos conjuntos diferentes si podemos establecer una "correspondencia uno-a-uno", entre ambos, se puede deducir que tienen el mismo número de elementos. Para un número finito de números naturales ocurre lo mismo, pero lo que es evidente para números finitos deja de serlo para infinitos.

Se puede establecer una correspondencia uno-a-uno entre los números naturales y los números enteros de la siguiente forma: 0(entero)--> 0(natural); -1(entero)--> 1(natural); +1 (entero)--> 2 (natural) y así seguimos indefinidamente con la siguiente tabla:



Cada entero y cada número natural aparecen una y sólo una vez en la tabla. Esta correspondencia entre cada par de números entero-natural es lo que establece en la teoría de Cantor que el número de elementos de la columna de enteros es igual al número de elementos en la columna de naturales. Por consiguiente, el número de enteros es el mismo que el de naturales. De forma similar, aunque algo más complicada, se puede probar que el conjunto de fracciones (racionales) tiene el mismo número de elementos que el conjunto de enteros. El número es infinito, pero no importa, es el mismo número.

El gran matemático David Hilbert se inventó la metáfora del Hotel Infinito para explicar de forma intuitiva las paradojas a las que nos enfrenta la existencia de infinidad de infinitos:

"Había un hotel que tenía infinitas habitaciones. Un día llega un nuevo huésped para alojarse allí, pero el conserje le dice que tenía mala suerte, que estaban todas llenas. El huésped, indignado llama al gerente, y le pregunta cómo era posible en un hotel con infinitas habitaciones. El gerente le da la razón, pero dice que no puede hacer nada, entonces el huésped responde rápidamente: ‘ya se lo que se puede hacer; al que esté en la habitación 1 lo manda a la habitación 2, al de la habitación 2 a la 3 y así sucesivamente, entonces la habitación 1 quedará libre para mi. El gerente
encontró maravillosa esta solución y así lo hizo".


"Algunos días después llega otro huésped y pide de alojarse, a lo que le responden que el hotel estaba lleno, pero que no se preocupara, que sabían cómo solucionarlo. Entonces este huésped dice que había un problema, que él no estaba solo, sino con un grupo de amigos… y que era un grupo infinito. El gerente, otra vez consternado no sabía qué hacer, pero el huésped, también muy hábil le dice que no se preocupe, que mande al de la habitación 1 a la 2, al de la 2 a la 4, al de la 3 a la 6 y así sucesivamente. De esa forma todas las habitaciones con números impares quedarían libres para sus infinitos amigos."

Los conjuntos que pueden ser puestos en correspondencia uno-a-uno con los números naturales se llaman numerables, de modo que los conjuntos infinitos numerables tienen aleph sub-cero elementos.

¡Sorprendentemente, aunque se amplíe el sistema desde los números naturales a los enteros y a los racionales, no incrementamos realmente el número de objetos con los que trabajamos!.

Después todo esto podríamos pensar que todos los conjuntos infinitos son numerables, pero no es así, no sólo hay un tipo de infinito, pues la situación es muy diferente al pasar a los números reales. Cantor demostró mediante el argumento del "corte diagonal" que realmente hay más números reales que racionales. El número de reales es el número transfinito C, de continuo, otro nombre que recibe el sistema de los números reales.

Podríamos pensar en darle a ese número el nombre de aleph sub-uno, por ejemplo. Pero ese nombre representa el siguiente número transfinito mayor que aleph sub-cero y el decidir si efectivamente C = Aleph sub-uno constituye un famoso problema no resuelto, la llamada hipótesis del continuo.

Como curiosidad, ya que estamos hablando de infinitos, el término gugol (en inglés googol) es un número enorme 10100 fue acuñado en 1938 por Milton Sirotta, un niño de 9 años, sobrino del matemático estadounidense Edward Kasner. Kasner anunció el concepto en su libro Las matemáticas y la imaginación. Isaac Asimov dijo en una ocasión al respecto: "Tendremos que padecer eternamente un número inventado por un bebé".

El gúgol no es de particular importancia en las matemáticas y tampoco tiene usos prácticos. Kastner lo creó para ilustrar la diferencia entre un número inimaginablemente grande y el infinito, y a veces es usado de esta manera en la enseñanza de las matemáticas. El motor de búsqueda de google fue llamado así debido a este número. Los fundadores originales iban a llamarlo Googol, pero terminaron con Google debido a un error de ortografía de Larry Page, uno de los fundadores de Google.

2009/12/01

El espín y los extraños giros de los fermiones


De todas las cantidades físicas la conocida como espín se suele considerar como la más "mecano-cuántica". La palabra espín viene del inglés "spin", que significa giro o girar, y se refiere a una propiedad física de las partículas (1) subatómicas, por la cual toda partícula elemental tiene un momento angular intrínseco de valor fijo. Es una característica propia de la partícula como lo es la masa o la carga eléctrica, y una magnitud que se conserva como lo hace la energía o el momento lineal.



A diferencia de lo que ocurre con el momento angular de los objetos macroscópicos, a los que estamos acostumbrados, que puede tomar valores muy variados dependiendo de las acciones a las que se vean sujetos, la magnitud del espín de una partícula es siempre la misma para este tipo concreto de partícula. Es únicamente la dirección del eje de giro la que puede variar, aunque de una manera muy extraña.






Para un electrón, protón o neutron la cantidad de espín es siempre 1/2 del valor mínimo de momento permitido (ħ). Precisamente por eso esta cantidad de momento angular no estaría permitida para un objeto compuesto por cierto número de partículas orbitando sin que ninguna de ellas estuviese girando sobre sí misma. El espín sólo puede aparecer debido a que es una propiedad intrínseca de la propia partícula, es decir, que no surge del movimiento orbital de sus partes en torno a su centro.




Una partícula que, como el electrón, tiene un espín múltiplo impar de ħ/2 (ħ/2, 3ħ/3, 5ħ/2, etc) se llama fermión, y presenta una curiosa rareza: una rotación completa de 360º transforma su vector de estado no en sí mismo sino en el valor negativo de sí mismo; necesitaría por tanto de un giro de 720º para quedarse igual que antes del giro. La mayoría de las partículas de la Naturaleza son fermiones, las partículas restantes para las que el espín es un múltiplo entero de ħ (ħ, 2ħ, 3ħ, 4ħ, etc) se llaman bosones. Bajo una rotación de 360º el vector de estado de un bosón vuelve a sí mismo, y no a su negativo.





Si tomamos una partícula de espín 1/2, por ejemplo el electrón, el espacio de estados mecano-cuánticos posibles resulta ser bidimensional, de modo que podemos tomar una base de sólo dos estados que podemos representar como [arriba> y [abajo>, para el primero el espín gira a derechas alrededor de la dirección vertical hacia arriba y para el segundo lo hace de la misma manera hacia abajo. De la misma forma que en un plano euclidiano cualquier vector es una superposición lineal de las dos bases ortonormales consideradas, en este caso ocurre igual, cualquier estado posible de espín del electrón es una superposición lineal, por ejemplo:


w [arriba> + z [abajo>, siendo w, z dos números complejos. Puesto que el estado físico representado queda inalterado si multiplicamos las dos componentes por un número complejo distinto de cero, la razón z/q será el número complejo significativo que represente el estado de la partícula.


Este número complejo se representa sobre una esfera llamada de Riemann, tal como aparece en la figura. En el ecuador de la misma se encuentran los puntos singulares 1,-1, i y -i.



La esfera de Riemann juega un papel fundamental en cualquier sistema cuántico de dos estados, describiendo el conjunto de estados cuánticos posibles. Para una partícula de espín 1/2, su papel geométrico es particularmente evidente puesto que los puntos de la esfera corresponden a las posibles direcciones espaciales para el eje de giro. En otras situaciones el papel de la esfera de posibilidades de Riemann está bastante más oculto, con una relación mucho menos clara con la geometría espacial.


El extraño giro de 720º del electrón para quedarse igual es toda una paradoja. En muchas ocasiones nos parece que la mecánica cuántica presenta fenómenos completamente fuera de toda lógica, pero al analizar infinidad de situaciones completamente normales para nosotros a la luz de esta asombrosa teoría observamos que sin ella no tienen explicación. La propia cohesión de la materia, tal como la conocemos, o la existencia de las cuatro fuerzas fundamentales no tendrían sentido. En este último caso en sus fundamentos, paradojicamente, se encuentra el propio principio de incertidumbre. Un principio "engorroso" que parece que sólo sirve para impedirnos medir con infinita exactitud.


(1) Se admite que una "partícula" puede poseer partes individuales con tal que pueda ser tratada mecanocuánticamente como un todo simple, con un momento angular total bien definido.

2009/11/18

La medida natural de las cosas

La relación que tratamos de establecer entre dos cantidades puede ser engañosa. En ocasiones los valores más lógicos de las mismas nos alejan de la realidad y del fenómeno que tratamos de estudiar. El sentido común nos puede dar una aproximación del resultado capaz de guiarnos para encontrar la solución correcta, la que se amolda de verdad a la realidad.



Supongamos que queremos relacionar dos cantidades que se corresponden con una realidad palpable, por ejemplo dos longitudes de un determinado objeto, y nos dan las siguientes medidas: 2 y 1/2, 3 y 1/3, 4 y 1/4, ... n y 1/n. Siendo n un número natural. La división entre ellas no nos ofrece ningún conflicto, será 4, 9, 16, ... n2, nos está dando la cantidad de veces que una cantidad es mayor que otra. Sin embargo hay relaciones que pueden dar equívocos si nos dejamos guiar por el resultado puramente matemático. Por ejemplo, si nos fijamos en la figura que representa el fractal clásico llamado copo de Koch y su construcción, vemos que en cada iteración sustituimos un segmento de 3 unidades por cuatro segmentos de una unidad: justamente la relación entre log 4/ log 3 nos da la dimensión fractal de la figura, que es 1.261859… Si lo que queremos relacionar son las dos longitudes representadas por cualquier número natural N y su inverso 1/N, al hallar la relación similar a la anterior, del copo de Koch, nos encontramos con un valor negativo, -1, una dimensión negativa para un fractal, cuando físicamente no tiene ningún sentido, pues la dimensión fractal siempre es igual a la topológica (o dimensión aparente) más un coeficiente dimensional, tanto mayor cuanto más irregular es el fractal.


Matemático y lógico, Kronecker defendía que la aritmética y el análisis deben estar fundados en los números enteros prescindiendo de los irracionales e imaginarios. Fue autor de una frase muy conocida entre los matemáticos: "Dios hizo los naturales; el resto es obra del hombre" (Eric Temple Bell 1986, p.477. Men of Mathematics ).

Esa es la cuestión, en nuestro caso debemos convertir 1/N y N en dos nuevos números naturales que al relacionarnos, para expresar el valor que representa la dimensión del objeto, nos de un resultado coherente con la realidad que estamos observando. Las figuras que siguen a este párrafo nos aclaran el camino a tomar para encontrar una posible solución, para este caso particular.


Vemos la construcción de una figura cuando N=3, N=4 y N=5. En la primera figura si damos el valor 3 al lado, su perímetro será 27 (33), pero si le damos el valor 1/3, su nuevo perímetro será 3. Así ocurre para N=4 ó N=1/4 , etc, y en general para cualquier valor N y 1/N (con N finito, aunque tan grande como queramos). Siempre ocurrirá que si el lado es N el perímetro será N3 y si el lado es 1/N el perímetro será N, sin que para ello varíe la forma de la figura.


La conversión natural será la que transforma la pareja de medidas (1/N, N) en (N, N3) y el valor irregular, -1, que encontrábamos para la dimensión fractal de la curva se convertiría en 3. Este valor le daría a la curva la capacidad de llenar el espacio. Es un fractal con dimensión entera, de forma similar al caso de un movimiento aleatorio puro, que de cada N2 pasos realizado sólo se aleja N, de cualquier punto arbitrario de referencia que consideremos, y por tanto tiene una dimensión fractal igual a 2, capaz de llenar el plano.

En realidad, para nuestro caso (1/N, N), existen infinitas conversiones, responden a la expresión :

Dim. fractal (*)= 1 + 2/logL(N) , siendo L(N) el valor del lado que consideremos, como función de N. Para L(N)= 1/N tenemos el valor -1, para L(N)=N, le corresponde el valor 3, como hemos dicho. Para valores de exponente natural más negativos (1/N2 ) y mayores la dimensión se acerca asintóticamente a l. Para valores mayores de N, como N2, N3, o de mucho mayor exponente el valor asintótico será también 1.

Al final no podemos confiar ciegamente en el valor que nos dan las matemáticas, pues el mundo que representan es mucho más amplio que el mundo real y siempre necesitaremos de nuestro sentido común, en el análisis de los resultados encontrados. Por otra parte, paradójicamente, en ocasiones ocurre lo contrario: el sentido común nos ciega y nos impide ver una realidad más profunda que subyace en los resultados matemáticos.

(*)Tomando logaritmos en base N





Dualidad T, (1/N,N)



Como simple curiosidad, sobre el intercambio de valores 1/N y N, y como culturilla sobre teoría de cuerdas, todo esto puede recordarnos la llamada Dualidad-T:



En la expresión que representa los cuadrados de las energías de las excitaciones de una cuerda en un espacio con una dimensión curvada o compactada, K. Kikkawa y M. Yamanaka en 1984, observaron que la fórmula sigue teniendo el mismo aspecto si hacemos el intercambio R <--> 1/R. Siendo R el radio microscópico de la dimensión que se curva.

Desde un punto de vista físico esto indica que las energías de las excitaciones de una cuerda, cuando hay una dimensión extra de radio R, es la misma que la de una cuerda cuando el radio es 1/R. No ya las energías, sino todas las propiedades físicas de ambos sistemas son exactamente las mismas. Llama la atención, pues cuando R aumenta 1/R decrece, contradiciendo la experiencia de la vida diaria, que nos dice que las cosas pequeñas difieren de las grandes. Para una cuerda ello no es así.


Sobre "Unificación y dualidad en teoría de cuerdas", ver el número de agosto de 1998 de Investigación y Ciencia, de Luis E. Ibáñez Santiago.

2009/11/05

Lo que esconden los fractales y la energía oscura, una hipótesis

Los fractales esconden bajo sus “arrugas” parte de sí mismos. Suponiendo la hipótesis de un vacío cuántico fractal, la escurridiza energía oscura podría ser la consecuencia de la estructura fractal de las fluctuaciones cuánticas del vacío que conforman todo el espacio.


La medida de la costa de Bretaña
Benoït Mandelbrot se preguntaba cuánto medía la costa de Bretaña, o cualquier costa real que suele ser irregular e intrincada. Un geógrafo se lo habría respondido perfectamente, pero no era esa la repuesta que buscaba Mandelbrot. El geógrafo da por sentado que al medir la costa tiene que hacerlo con unos criterios prácticos determinados, se atiene a ellos, la mide y la registra para siempre en los libros de geografía.

Para Mandelbrot, la pregunta era mucho más transcendente de lo que puede parecer a simple vista, porque se dio cuenta de que la medida dependía de la unidad de medida con la que fuera a efectuarse. Si la mínima unidad de medida a tomar fuera un kilómetro hallaríamos un valor, y si esa mínima unidad fuera el doble encontraríamos un resultado menor. Conforme la unidad utilizada es menor, al efectuar la medida nos acercamos mejor a las irregularidades del terreno y hallamos un valor mayor. Para una costa matemática teórica, de hecho, la unidad de medida la podemos hacer tender a cero tanto como queramos y el resultado obtenido siempre será mayor. En el límite la longitud de cualquier costa teórica es infinita.

Dimensión fraccionaria de una costa
Las costas son ejemplos sencillos de unos objetos matemáticos que Benoït Mandelbrot llamó fractales, porque su estructura es discontinua, rota o fracturada (del latín “fractus”) y mantienen el mismo aspecto a diferentes escalas. A diferencia de los objetos geométricos continuos que conocemos como líneas o planos, los fractales son capaces de “llenar” más espacio del que deberían llenar. Las costas fractales, como líneas que son, deberían tener la capacidad de llenar una dimensión, pero realmente llenan 1.25, 1.30, 1.35… etc. Su dimensión, que es fraccionaria, está entre la línea y el plano, es decir entre 1 y 2, y conforme son más irregulares mayor es su dimensión, a la que llamamos dimensión fractal.



Vacío clásico y vacío cuántico
El vacío clásico y continuo es, en cierta forma, como una costa lineal y regular, sin entrantes ni salientes. El vacío cuántico es muy diferente, sus fluctuaciones le confieren una estructura irregular que nos puede recordar la estructura fractal de las costas de los países. De “lejos” no es diferente del vacío clásico, pero de “cerca” nos ofrece una visión muy diferente, las fluctuaciones ganan protagonismo porque dependen del inverso de la distancia: a distancia mitad son el doble de intensas. Esta diferencia entre el vacío clásico y el cuántico se puede observar, perfectamente, tratando de seguir las trayectorias de las partículas subatómicas. En el vacío clásico estas están bien definidas y son líneas continuas, en el vacío cuántico no existen como tales, no son propiamente trayectorias pues conforme las tratamos de observar con más detalle, más irregulares aparecen. Son fractales con una dimensión 2.

¿Vacío cuántico como un fractal?
Todo esto hace pensar en la posibilidad de considerar el vacío cuántico como una fractal, en el que la energía de las fluctuaciones cuánticas determinaría su grado de irregularidad, y en base a su valor (un escalar) se podría calcular la dimensión fractal de estas fluctuaciones que conforman todo el espacio.

Lo que esconden los fractales y la energía oscura, una hipótesis
Entre dos puntos A y B del espacio euclídeo se puede trazar una recta. La distancia entre los dos puntos siguiendo esta recta es la longitud de la misma. Sin embargo si esa recta la convertimos en una costa fractal real (sin las infinitas irregularidades de una costa fractal matemática), la distancia entre los dos puntos, siguiendo la costa, se puede hacer todo lo grande que se desee dependiendo de la cantidad de irregularidades de la misma.

Si observamos esta línea costera en la distancia, las irregularidades se disimulan y su aspecto se acerca al de una línea mucho más regular. Su distancia aparente también estará cercana a la de la línea recta AB. Sabremos la distancia real AB a través de la costa fractal y la distancia aparente, vista la costa desde lejos. En cierta forma parece que ha desaparecido una parte de la costa, una parte que desde lejos no logramos observar, porque queda escondida entre las irregularidades del fractal.

Si suponemos la hipótesis fractal de las fluctuaciones cuánticas del vacío, ¿la parte escondida por este inmenso fractal podría ser la llamada energía oscura?




En la figura:(representación del vacío
cuántico), los trazos más anchos se corresponden con fermiones (quarks, electrones...) y sus antipartículas, mientras que los trazos más finos corresponden a bosones (gluones, fotones, W+, W-, Z0,...). En lo concerniente al color de los quarks y gluones, se corresponden con la carga de color de los mismos mientras que las partículas insensibles a la interacción fuerte aparecen en blanco o gris.)



Lo que sabemos hasta ahora de la energía oscura
La naturaleza exacta de la energía oscura es una materia de especulación. Se conoce que es muy homogénea, no muy densa y no se conoce la interacción con ninguna de las fuerzas fundamentales más que la gravedad. Como no es muy densa, unos 10−29 g/cm³, es difícil de imaginar experimentos para detectarla en laboratorio. La energía oscura sólo puede tener un profundo impacto en el Universo, ocupando el 70% de toda la energía, debido a que por el contrario llena uniformemente el espacio vacío.

Dos posibles formas de la energía oscura son la constante cosmológica, una densidad de energía constante que llena el espacio en forma homogénea y campos escalares como la quintaesencia: campos dinámicos cuya densidad de energía puede variar en el tiempo y el espacio. De hecho, las contribuciones de los campos escalares que son constantes en el espacio normalmente también se incluyen en la constante cosmológica. Se piensa que la constante cosmológica se origina en la energía del vacío. Los campos escalares que cambian con el espacio son difíciles de distinguir de una constante cosmológica porque los cambios pueden ser extremadamente lentos.
Para distinguir entre ambas se necesitan mediciones muy precisas de la expansión del Universo, para ver si la velocidad de expansión cambia con el tiempo. La tasa de expansión está parametrizada por la ecuación de estado. La medición de la ecuación estado de la energía oscura es uno de los mayores retos de investigación actual de la cosmología física.






2009/10/08

Algo más sobre fractales, su dependencia espacial

La dimensión de un fractal está íntimamente relacionada con la manera en que éste se extiende por el espacio. Su dimensión nos da la capacidad del fractal de recubrir un espacio de dimensión topológica superior a la suya, de hecho, una trayectoria fractal de dimensión 2 es capaz de recubrir el plano, y de dimensión 3 el espacio tridimensional.



Imaginemos que en un espacio de tres dimensiones nos encontramos con una especie de diablillo virtual moviéndose aleatoriamente, con total libertad, y tratando de recubrirlo por completo. Su trayectoria será una línea quebrada, con infinidad de recovecos, cuyo fin será pasar por todos los puntos del espacio. Como línea de trayectoria que es su dimensión topológica será la unidad, pero su capacidad de recubrir el espacio nos indica que estamos ante un objeto geométrico diferente a los típicos objetos euclidianos que hemos estudiado en la escuela, como el punto, la línea o el plano de dimensiones cero, uno o dos. Este tipo de objetos es lo que Benoît Mandelbrot llamaba en 1975 objetos fractales, palabra que inventó a partir del adjetivo latino “fractus” (roto, fracturado).

Dimensión fractal. La dimensión que define la trayectoria del diablillo ya no es la dimensión clásica de una línea (la unidad), sino que a ella debemos añadir un coeficiente dimensional que nos indica su grado de irregularidad. La suma de los dos coeficientes nos da un nuevo valor dimensional al que llamamos dimensión fractal. En este caso hacemos la siguiente suma: dimensión geométrica clásica (1) + coeficiente dimensional (2) = dimensión fractal (3).


Dependencia con la distancia. Hay un detalle más que nos da una idea del movimiento que lleva el diablillo. La distancia total que recorre al cabo de N de sus pasos debe ser sólo la raíz cúbica de su alejamiento efectivo a un punto arbitrario, es decir para alejarse una distancia efectiva d, de un punto cualquiera, su recorrido total deberá ser d3. Este exponente (3) nos está dando, también, la dimensión fractal del movimiento. En cierta forma es lógico que sea así, pues el volumen que intersecta y recubre la trayectoria es del orden del cubo de su distancia característica (Volumen = Lado3).

En una trayectoria espacial fractal:

(1) Distancia total recorrida = Distancia efectiva(dimensión fractal)


Siendo la dimensión fractal igual a la dimensión topológica más un coeficiente dimensional positivo, tanto mayor cuanto más intrincado sea el fractal, la expresión (1) quedaría:

(1) Distancia total recorrida = Distancia efectiva(dimensión topol. + coef. dimensional)



¿Puede la geometría del espacio modificar la dimensión fractal?. Imaginemos una trayectoria fractal que pasa desde un espacio de 3 dimensiones a otro de 2. En la realidad podría ser el paso gradual de una tubería de 10 cm. x 10 cm. a otra de 0,1 cm. x 1000 cm., del mismo caudal. Para, depende que movimiento, el paso podría suponer cambiar, prácticamente, de 3 a 2 dimensiones. En la nueva situación la dimensión topológica habría descendido en una unidad, por lo que para el mismo coeficiente dimensional (que depende de la irregularidad del fractal), la nueva dimensión fractal sería menor. La disminución de dimensiones topológicas actúa de forma opuesta (restando) a como actúa el coeficiente dimensional (sumando). Al final obtendríamos, en la práctica, un movimiento menos irregular e intrincado.


Y sobre todo esto, en plan un tanto informal, añado un articulito que se publicó en la web de la Real Sociedad Española de Física, en el foro de debate sobre Física Divertida . Pocos meses antes se había publicado en la revista ImasD de ciencia y tecnología (revista en papel, posteriormente electrónica y hoy desaparecida: www.ImasD-tecnología.com).Otro articulo posterior, también muy sencillo, publicado por la Revista Elementos, de la Universidad Autónoma de Puebla: El sorprendente vacío cuántico.


El diablo Aleaxis y el efecto de ocultación de masa.


Aleaxis es un simpático e inconsciente diablillo que no para de dar pasos, a tontas y a locas de forma aleatoria, en cualquier dirección del plano. Su trayectoria es discontinua, puede ser representada por una línea quebrada que acabaría recubriendo todo el plano. En su torpeza, para recorrer una distancia efectiva de “n” pasos debe dar como media n x n , es decir n2 pasos: su trayectoria, en realidad, representa un fractal, una estructura quebrada y discontinua de dimensión 2, la dimensión fractal que caracteriza al azar puro.

De forma similar, las fluctuaciones de energía del vacío (principio de incertidumbre) representan a otro diablo, esta vez real y poderoso, que hace mucho más interesante nuestro universo. Sin él el vacío estaría vacío, además de parecerlo, sería plano y estaría absolutamente quieto. Este diablo, un tanto escurridizo y nada torpe, arruga el espacio-tiempo y lo convierte en un fractal similar a la trayectoria de Aleaxis. Esta vez, para que nosotros observemos “n pasos” de fluctuación efectiva de energía, el diablo “da“ n x n x n pasos, es decir n3 .

Observando, solamente, los pasos efectivos de Aleaxis y sabiendo que su trayectoria es un fractal podemos inferir que existe un “efecto de ocultación de pasos”. De la misma forma, al observar las fluctuaciones efectivas de energía del vacío (son las únicas que podemos observar) deducimos que hay un poderoso “efecto de ocultación de energía “ (o masa, por el principio de equivalencia entre masa y energía).

El poderoso diablo de las fluctuaciones, además de arrugar el espacio-tiempo, enrolla parte de sus dimensiones para acentuar el “efecto de ocultación”. Si sólo se limitara a arrugarlo las fluctuaciones de la energía interferirían lo suficiente para no dejarnos ver el vacío como tal (al no depender del inverso de la distancia sino de su raiz cúbica). En la realidad dependen del inverso de la distancia: a grandes distancias su valor es despreciable, a pequeñas distancias es impresionantemente grande, contribuyendo a la impresión de un paradójico vacío “superdenso”. El diablo actúa como un verdadero mago: esconde ingentes cantidades de masa, detrás de sus arrugas enrolladas, hasta que hace “aparecer” el vacío. Sólo al acercarnos, “en las pequeñas distancias “, advertimos su truco.




2009/09/07

¿Mecánica cuántica fractal?

Benoit Mandelbrot decía que la geometría fractal nos enseña a observar este viejo mundo con unos nuevos ojos. La existencia del cuanto de acción que está íntimamente unida a la propia naturaleza de la energía de las fluctuaciones cuánticas del vacío obliga a que su estructura sea discontinua, escalonada, fractal, por ello la geometría fractal puede enseñarnos algo que antes no podíamos ver.

Creo que hay argumentos objetivos para considerar una mecánica cuántica fractal, es decir una mecánica cuántica bajo el punto de vista de la geometría fractal, pero en ciencia existen unas tendencias o modas de las que es difícil desviarse, aunque sea para dar un corto paseo. Ese puede ser uno de los problemas por los que se encuentra estancada la física actual.


Y no es una reflexión mía, lo dicen algunos de los mejores físicos de la actualidad, se nos está escapando algo que debemos tenerlo delante de nuestras narices y no somos capaces de verlo. Sinceramente, creo que los fractales pueden ayudarnos a encontrarlo.

Con los fractales, en cierta manera, deshacemos la abstracción que nos lleva a pasar de un objeto real a objetos geométricos ideales como una línea, un cubo o una esfera, y nos acercamos un poco más a dicho objeto real. Benoït Mandelbrot utiliza el ejemplo sencillo de algo real, como son las costas de los países, para aproximarnos a los fractales. Son líneas quebradas que siguen teniendo un aspecto parecido cuando cambiamos de escala. Precisamente estas dos propiedades son las que definen a un fractal: discontinuidad (rotura, fractura, de ahí su nombre) y autosemejanza con el cambio de escala. Medimos su grado de fractura e irregularidad con un simple número que llamamos dimensión fractal.

Al respecto es importante repasar el concepto de estructura fractal de Kenneth Falconer en su obra titulada “Fractal Geometry: Mathematical Foundations and Applications”, en 1990. En ella describe un concepto de estructura fractal ‘F’ como la que satisface alguna(s) de las propiedades siguientes:

(1).- “F” posee detalle a todas las escalas de observación;
(2).- No es posible describir “F” con Geometría Euclidiana, tanto local como globalmente;
(3).- “F” posee alguna clase de autosemejanza, posiblemente estadística;
(4).- La dimensión fractal de “F” es mayor que su dimensión topológica;
(5).- El algoritmo que sirve para describir “F” es muy simple, y posiblemente de carácter recursivo.


Benoit Mandelbrot decía que la geometría fractal nos enseña a observar este viejo mundo con unos nuevos ojos. La existencia del cuanto de acción que está íntimamente unida a la propia naturaleza de la energía de las fluctuaciones cuánticas del vacío obliga a que su estructura sea discontinua, escalonada, fractal, por ello la geometría fractal puede enseñarnos algo que antes no podíamos ver.

Curiosamente, si buscamos en google "mecánica cuántica fractal" o bien en inglés "Fractal quantum mechanics", practicamente no encontramos nada. En español he encontrado este estupendo enlace a Ciencia Kanija. En mi entrada sobre "Diez dimensiones, supercuerdas y fractales"(*), podéis leer algo más sobre todo esto. Un saludo amigos.

(*)La Universidad de Chile, en su revista Ciencia Abierta , me publicó el artículo “ Estabilización del vacío cuántico y dimensiones enrolladas”, ( después otros dos más completos) sobre la posibilidad de que el estudio de la energía de las fluctuaciones cuánticas del vacío nos estuviera evidenciando, indirectamente, la existencia de las 6 dimensiones enrolladas que necesita la teoría de supercuerdas. Los cálculos parecen indicar que en el estado en que se adoptó la configuración de 3 dimensiones ordinarias y 6 compactadas, debió decidirse la propia naturaleza del cuanto de acción